精英家教网 > 高中数学 > 题目详情
6.A={(x,y)|y=2x+5},B={(x,y)|y=1-2x},则A∩B=(  )
A.(-1,3)B.{(-1,3)}C.{-1,3}D.

分析 通过联立方程组求解即可.

解答 解:A={(x,y)|y=2x+5},B={(x,y)|y=1-2x},
可得$\left\{\begin{array}{l}{y=2x+5}\\{y=1-2x}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$.
则A∩B={(-1,3)}.
故选:B.

点评 本题考查交集的运算,直线方程的交点坐标的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin(ωx-$\frac{π}{3}$)(ω>0)的最小正周期为π,则函数f(x)的单调递增区间为(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$](k∈Z)D.[kπ+$\frac{5π}{6}$,kπ+$\frac{11π}{6}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若角α的终边过点(1,-2),则sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=sin(x$+\frac{π}{3}$)cos($\frac{π}{6}$-x)的最小正周期是(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设logaba=p,用p表示logab$\sqrt{\frac{a}{b}}$=p-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\sqrt{3}$cos(4x-$\frac{π}{6}$),将函数y=f(x)的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再将所得函数图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则函数y=g(x)的一个单调递增区间为(  )
A.[-$\frac{π}{3}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,$\frac{π}{4}$]C.[$\frac{π}{6}$,$\frac{2π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从边长为4的正方形ABCD内部任取一点P,则P到对角线AC的距离大于$\sqrt{2}$的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为$\frac{4}{π}$.后人导出了“牟合方盖”的$\frac{1}{8}$体积计算公式,即$\frac{1}{8}$V=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,为从而计算出V=$\frac{4}{3}$πr3.记所有棱长都为r的正四棱锥的体积为V,棱长为2r的正方形的方盖差为V方盖差,则$\frac{{V}_{方盖差}}{{V}_{正}}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在3张奖券中,一等奖、二等奖各有1张,另1张无奖.甲、乙两人各抽取1张,则恰有一人获奖的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案