精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是A1B1,AC1的中点.
(1)求证:MN∥平面BCC1B1
(2)求证:平面MAC1⊥平面ABC1
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)欲证MN||平面BCC1B1,根据直线与平面平行的判定定理可知只需证MN与平面BCC1B1内一直线平行即可,而连接BC1,AC1.根据中位线定理可知MN||BC1,又MN?平面BCC1B1满足定理所需条件;
(2)证明MN⊥BC1,MN⊥AC1,即可证明MN⊥平面ABC1,从而证明平面MAC1⊥平面ABC1
解答: 证明:(1)连接BC1,AC1
在△ABC1中,∵M,N是AB,A1C的中点,∴MN∥BC1
又∵MN?平面BCC1B1,∴MN∥平面BCC1B1
(2)∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,
∴四边形BCC1B1是正方形,
∴BC1⊥B1C,
∴MN⊥BC1
连接AM,C1M,则△AMA1≌△B1MC1
∴AM=C1M,
∵N是AC1的中点,
∴MN⊥AC1
∵AC1∩BC1=C1
∴MN⊥平面ABC1
∵MN?平面MAC1
∴平面MAC1⊥平面ABC1
点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a?α⇒a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α⇒a∥β).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且满足条件S8=36,a3=3.
(1)求数列{an}的通项公式;
(2)令bn=
1
an
+
1
an+1
+…+
1
a2n
,若对任意正整数n∈N*,log2
1
4
x2+x)-bn>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-16x+c+3,
(Ⅰ)若函数f(x)在区间[-1,1]上存在零点,求实数c的取值范围;
(Ⅱ)是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?若存在,请求出t的值;若不存在,请说明理由(注:[a,b]的区间长度为b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),(n∈N*
(1)求通项an
(2)设bn=|
Sn
n
-3n+20|,求数列{bn}前n项和Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-x2-3ax+b.
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-
1
2
+sin(
π
6
-2x)+cos(2x-
π
3
)+cos2x.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-
π
8
8
]上的最大值,并求出f(x)取最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1=2,a4=16,
(1)若a3,a5分别是等差数列{bn}的第3项和第5项,求数列{bn}的通项公式;
(2)设cn=an+bn,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
1x
21
的一个特征值为-1,则其另一个特征值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

记N(A)为有限集合A的某项指标,已知N({a})=0,N({a,b})=2,N({a,b,c})=6,N({a,b,c,d})=14,运用归纳推理,可猜想出的合理结论是:若n∈N+,N({a1,a2,a3,…an})=
 
(结果用含n的式子表示)

查看答案和解析>>

同步练习册答案