分析 由题意可得a≤0,b≤0,f(x)可取得最大值,即有f(x)=x+$\frac{1}{x}$-ax-b,x∈[$\frac{1}{2}$,2],求出导数和极值点,计算端点处的函数值,比较可得最大值M(a,b),即可得到所求最小值.
解答 解:由题意可得a≤0,b≤0,f(x)可取得最大值,
即有f(x)=x+$\frac{1}{x}$-ax-b,x∈[$\frac{1}{2}$,2],
f′(x)=1-$\frac{1}{{x}^{2}}$-a=$\frac{(1-a){x}^{2}-1}{{x}^{2}}$,
由f′(x)=0可得x=$\sqrt{\frac{1}{1-a}}$(负的舍去),
且为极小值点,
且$\frac{1}{2}$≤$\sqrt{\frac{1}{1-a}}$≤2,解得-3≤a≤$\frac{3}{4}$,
则f($\frac{1}{2}$)=$\frac{5}{2}$-$\frac{1}{2}$a-b,f(2)=$\frac{5}{2}$-2a-b,
由f($\frac{1}{2}$)-f(2)=$\frac{3}{2}$a<0,即有f(2)取得最大值,
即有M(a,b)=$\frac{5}{2}$-2a-b,
可得a=0,b=$\frac{9}{4}$时,取得最小值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.
点评 本题考查函数的最值的求法,注意运用导数,求得极值点,比较端点处的函数值,考查不等式的性质,以及推理能力及运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{3}$ | B. | $-\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈Z | B. | (2kπ-$\frac{2}{3}$π,2kπ+$\frac{4}{3}$π),k∈Z | ||
| C. | (4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈Z | D. | (4kπ-$\frac{2}{3}$π,4kπ+$\frac{4}{3}$π),k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com