精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=|x+$\frac{1}{x}$-ax-b|(a,b∈R),当x∈[$\frac{1}{2}$,2]时,设f(x)的最大值为M(a,b),则M(a,b)的最小值为$\frac{1}{4}$.

分析 由题意可得a≤0,b≤0,f(x)可取得最大值,即有f(x)=x+$\frac{1}{x}$-ax-b,x∈[$\frac{1}{2}$,2],求出导数和极值点,计算端点处的函数值,比较可得最大值M(a,b),即可得到所求最小值.

解答 解:由题意可得a≤0,b≤0,f(x)可取得最大值,
即有f(x)=x+$\frac{1}{x}$-ax-b,x∈[$\frac{1}{2}$,2],
f′(x)=1-$\frac{1}{{x}^{2}}$-a=$\frac{(1-a){x}^{2}-1}{{x}^{2}}$,
由f′(x)=0可得x=$\sqrt{\frac{1}{1-a}}$(负的舍去),
且为极小值点,
且$\frac{1}{2}$≤$\sqrt{\frac{1}{1-a}}$≤2,解得-3≤a≤$\frac{3}{4}$,
则f($\frac{1}{2}$)=$\frac{5}{2}$-$\frac{1}{2}$a-b,f(2)=$\frac{5}{2}$-2a-b,
由f($\frac{1}{2}$)-f(2)=$\frac{3}{2}$a<0,即有f(2)取得最大值,
即有M(a,b)=$\frac{5}{2}$-2a-b,
可得a=0,b=$\frac{9}{4}$时,取得最小值为$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查函数的最值的求法,注意运用导数,求得极值点,比较端点处的函数值,考查不等式的性质,以及推理能力及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$为同一平面内两个不共线向量,且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}∥\overrightarrow{b}$,则k的值为(  )
A.$-\frac{8}{3}$B.$-\frac{4}{3}$C.$-\frac{3}{4}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,若复数z满足i3•z=1+i,则|z|=(  )
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,且|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,且$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,则实数$\frac{m}{n}$的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ,η∈(a,b),使得$\frac{f′(ξ)}{f′(η)}=\frac{{e}^{b}-{e}^{a}}{b-a}•{e}^{-η}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知一个正△ABC的边长为6cm,点D到△ABC各顶点的距离都是4cm.求:
(1)点D到△ABC所在平面的距离;
(2)DB与平面ABC所成角的余弦值;
(3)二面角D-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,Sn为其前n项和,a2+a6=6,S3=5.
(I)求数列{an}的通项公式;
(II)令${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}({n≥2}),{b_1}=3,{T_n}={b_1}+{b_2}+…+{b_n}$,若Tn<m对一切n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),A($\frac{1}{3}$,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是(  )
A.(2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈ZB.(2kπ-$\frac{2}{3}$π,2kπ+$\frac{4}{3}$π),k∈Z
C.(4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈ZD.(4kπ-$\frac{2}{3}$π,4kπ+$\frac{4}{3}$π),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足${a_1}=1,|{{a_n}-{a_{n-1}}}|=\frac{1}{2^n}({n≥2,n∈N})$,且{a2n-1}是递减数列,{a2n}是递增数列,则5-6a10=$\frac{1}{512}$.

查看答案和解析>>

同步练习册答案