精英家教网 > 高中数学 > 题目详情
已知f(x)=
x+2
x+1
,则f(1)+f(2)+…+f(10)+f(
1
2
)+f(
1
3
)+…f(
1
10
)
=______.
f(x)=
x+2
x+1
,∴f(x)+f(
1
x
)=1+
1
x+1
+1+
1
1
x
+1
=3
∴f(2)+f(
1
2
)=3,f(3)+f(
1
3
)=3,…
而f(1)=
3
2

f(1)+f(2)+…+f(10)+f(
1
2
)+f(
1
3
)+…f(
1
10
)
=28.5
故答案为:28.5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域为,且对任意,都有,且当时,恒成立,
证明:(1)函数上的减函数;
(2)函数是奇函数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x+
2x-1
(  )
A.有最小值
1
2
,无最大值
B.有最大值
1
2
,无最小值
C.有最小值
1
2
,最大值2
D.无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在集合{a,b,c,d}上定义两种运算⊕和?(如下图),则d?(a⊕c)=______.
?abcd
aaaaa
babcd
cacca
dadad
abcd
aabcd
bbbbb
ccbcb
ddbbd

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若a,b,c,d是正数,且满足a+b+c+d=4,用M表示a+b+c,a+b+d,a+c+d,b+c+d中的最大者,则M的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=|mx2-(2m+1)x+(m+2)|恰有四个单调区间,则实数m的取值范围(  )
A.m<
1
4
B.m<
1
4
且m≠0
C.0<m<
1
4
D.m>
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在R上的偶函数f(x)满足:f(0)=5,x>0时,f(x)=x+
4
x

(1)求x<0时,f(x)的解析式;
(2)求证:函数f(x)在区间(0,2)上递减,(2,+∞)上递增;
(3)当x∈[-1,t]时,函数f(x)的取值范围是[5,+∞),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有
f(a)+f(b)
a+b
>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-
1
2
)<f(x-
1
4
);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数是奇函数,且在(),内是增函数,,则不等式 的解集为                                                                                                        (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案