1£®ÒÑÖªº¯Êýf£¨x£©=sin2xcos¦Õ+cos2xsin¦Õ£¨|¦Õ|£¼$\frac{¦Ð}{2}$£©£¬ÇÒº¯Êýy=f£¨2x+$\frac{¦Ð}{4}$£©µÃͼÏó¹ØÓÚÖ±Ïßx=$\frac{7¦Ð}{24}$¶Ô³Æ
£¨1£©Çó¦ÕµÄÖµ£»
£¨2£©Èô$\frac{¦Ð}{3}$£¼¦Á$£¼\frac{5¦Ð}{12}$£¬ÇÒf£¨¦Á£©=$\frac{4}{5}$£¬Çócos4¦ÁµÃÖµ£»
£¨3£©Èô0£¼¦È£¼$\frac{¦Ð}{8}$ʱ£¬²»µÈʽf£¨¦È£©+f£¨¦È+$\frac{¦Ð}{4}$£©£¼|m-4|ºã³ÉÁ¢£¬ÊÔÇóʵÊýmµÃȡֵ·¶Î§£®

·ÖÎö £¨1£©Ê×ÏȶԺ¯ÊýµÄ¹ØÏµÊ½½øÐкãµÈ±ä»»£¬½øÒ»²½ÀûÓú¯ÊýµÄ¶Ô³ÆÖáÇó³öº¯ÊýµÄ¦ÕµÄÖµ£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬½øÒ»²½Çó³öº¯ÊýµÄ½âÎöʽ£¬ÔÙÀûÓÃÒÑÖªµÄÌõ¼þÇó³öº¯ÊýµÄÖµ£®
£¨3£©ÀûÓúã³ÉÁ¢ÎÊÌ⣬½øÒ»²½Çó³ö²ÎÊýµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©º¯Êýf£¨x£©=sin2xcos¦Õ+cos2xsin¦Õ
=sin£¨2x+¦Õ£©£¬
Ôòy=f£¨2x+$\frac{¦Ð}{4}$£©=sin£¨4x+$\frac{¦Ð}{2}$+¦Õ£©=cos£¨4x+¦Õ£©£¬
ÓÉÓÚº¯Êýy=f£¨2x+$\frac{¦Ð}{4}$£©=cos£¨4x+¦Õ£©Í¼Ïó¹ØÓÚÖ±Ïßx=$\frac{7¦Ð}{24}$¶Ô³Æ£¬
ËùÒÔ£º$\frac{7¦Ð}{6}$+¦Õ=k¦Ð£¬
½âµÃ£º¦Õ=k¦Ð-$\frac{7¦Ð}{6}$£¬
ÓÉÓÚ|¦Õ|£¼$\frac{¦Ð}{2}$£¬
ËùÒÔ£ºµ±k=1ʱ£¬¦Õ=-$\frac{¦Ð}{6}$£®
£¨2£©ÓÉ£¨1£©µÃ£ºº¯ÊýµÄ½âÎöʽΪ£ºf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬
ÓÉÓÚ£º$\frac{¦Ð}{3}£¼¦Á£¼\frac{5¦Ð}{12}$£¬$\frac{¦Ð}{2}£¼2¦Á-\frac{¦Ð}{6}£¼\frac{2¦Ð}{3}$£¬
ÇÒf£¨¦Á£©=$\frac{4}{5}$£¬
ËùÒÔ£ºsin£¨2$¦Á-\frac{¦Ð}{6}£©$=$\frac{4}{5}$£¬cos£¨2$¦Á-\frac{¦Ð}{6}£©$=-$\frac{3}{5}$£¬
Ôò£ºcos2¦Á=cos£¨$2¦Á-\frac{¦Ð}{6}+\frac{¦Ð}{6}$£©=$cos£¨2¦Á-\frac{¦Ð}{6}£©cos\frac{¦Ð}{6}$-$sin£¨2¦Á-\frac{¦Ð}{6}£©sin\frac{¦Ð}{6}$=$\frac{-3\sqrt{3}-4}{10}$£®
ËùÒÔ£ºcos4¦Á=2cos22¦Á-1=$\frac{24\sqrt{3}-7}{50}$£»
£¨3£©f£¨¦È£©+f£¨¦È+$\frac{¦Ð}{4}$£©
=$sin£¨2¦È-\frac{¦Ð}{6}£©$+sin£¨2$¦È+\frac{¦Ð}{3}£©$
=$\sqrt{2}sin£¨2¦È+\frac{¦Ð}{12}£©$£¬
µ±0£¼¦È£¼$\frac{¦Ð}{8}$ʱ£¬
$\frac{¦Ð}{12}£¼2¦È+\frac{¦Ð}{12}£¼\frac{¦Ð}{3}$£¬
ËùÒÔ£º$[\sqrt{2}sin£¨2¦È+\frac{¦Ð}{12}£©]_{max}$=$\frac{\sqrt{6}}{2}$£¬
²»µÈʽf£¨¦È£©+f£¨¦È+$\frac{¦Ð}{4}$£©£¼|m-4|ºã³ÉÁ¢£¬
Ö»ÐèÂú×ã|m-4|$£¾\frac{\sqrt{6}}{2}$¼´¿É£®
ËùÒÔ£º$m£¾4+\frac{\sqrt{6}}{2}»òm£¼4-\frac{\sqrt{6}}{2}$£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£ºÈý½Çº¯Êý¹ØÏµÊ½µÄºãµÈ±ä»»£¬ÀûÓú¯ÊýµÄ¶Ô³ÆÖáÇóº¯ÊýµÄ½âÎöʽ£¬º¯ÊýµÄºã³ÉÁ¢ÎÊÌâµÄÓ¦Óã¬ÀûÓÃÈý½Çº¯ÊýµÄ¶¨ÒåÓòÇóÈý½Çº¯ÊýµÄÖµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¾­¹ýl1£º2x-y+3=0Óël2£º3x-y+2=0µÄ½»µãÇÒ´¹Ö±ÓÚÖ±Ïßl2µÄÖ±Ïß·½³ÌÊÇx+3y-16=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èôº¯Êýy=lnx-$\frac{a}{2}$x2ÔÚÇø¼ä£¨${\frac{{\sqrt{2}}}{2}$£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬aµÄȡֵ·¶Î§Îª£¨-¡Þ£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èô×ø±êÔ­µãµ½Å×ÎïÏßy=mx2µÄ×¼Ïß¾àÀëΪ2£¬Ôòm=£¨¡¡¡¡£©
A£®8B£®¡À8C£®$\frac{1}{8}$D£®¡À$\frac{1}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÅ×ÎïÏßG£ºx2=2py£¨p£¾0£©ÉÏÒ»µãR£¨m£¬4£©µ½Æä½¹µãµÄ¾àÀëΪ$\frac{17}{4}$£®
£¨¢ñ£©ÇópÓëmµÄÖµ£»
£¨¢ò£©ÉèÅ×ÎïÏßGÉÏÒ»µãPµÄºá×ø±êt£¬¹ýµãPÒýбÂÊΪ-1µÄÖ±Ïßl½»Å×ÎïÏßGÓÚÁíÒ»µãA£¬½»xÖáÓÚµãB£¬Èô|OA|=|OB|£¨OÎª×ø±êÔ­µã£©£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¹ýÅ×ÎïÏßC£ºy=ax2£¨a£¾0£©µÄ½¹µãF×÷Ö±Ïß½»CÓÚP£¬QÁ½µã£¬ÈôÏß¶ÎPFÓëQFµÄ³¤¶È·Ö±ðΪm£¬n£¬Ôòm2+n2µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{2}{{a}^{2}}$B£®2a2C£®$\frac{1}{2}$a2D£®$\frac{1}{2{a}^{2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¸ù¾ÝÏÂÁÐÌõ¼þ£¬Ð´³öÊýÁеÄǰËÄÏ²¢¹éÄɲÂÏëËüµÄͨÏʽ£º
¢Ùa1=1£¬an+1=an+$\frac{{a}_{n}}{n+1}$£¨n¡ÊN*£©
¢Úa1=-1£¬an+1=an+$\frac{1}{n£¨n+1£©}$£¨n¡ÊN*£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®²»ÇóÖµ£¬±È½ÏÏÂÁÐÁ½×éÕýÇк¯ÊýÖµµÄ´óС£º
£¨1£©tan167¡ãÓëtan173¡ã£»
£¨2£©tan£¨-$\frac{11¦Ð}{4}$£©Óëtan£¨-$\frac{13¦Ð}{5}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³Ñ§Ð£Ëæ»ú³éÈ¡²¿·ÖÐÂÉúµ÷²éÆäÉÏѧËùÐèʱ¼ä£¨µ¥Î»£º·ÖÖÓ£©£¬²¢½«ËùµÃÊý¾Ý»æÖÆ³ÉÆµÂÊÖ±·½Í¼£¨Èçͼ£©£¬ÆäÖÐÉÏѧËùÐèʱ¼äµÄ·¶Î§ÊÇ[0£¬100]£¬Ñù±¾Êý¾Ý·Ö×éΪ[0£¬20£©£¬[20£¬40£©£¬[40£¬60£©£¬[60£¬80£©£¬[80£¬100]£®
£¨¢ñ£©ÇóÖ±·½Í¼ÖÐxµÄÖµ£»
£¨¢ò£©Èç¹ûÉÏѧËùÐèʱ¼ä²»Ð¡ÓÚ1СʱµÄѧÉúÖпÉÒÔÉêÇëÔÚѧУסËÞ£¬Çë¹À¼ÆÑ§Ð£600ÃûÐÂÉúÖÐÓжàÉÙÃûѧÉú¿ÉÒÔסËÞ£¿
£¨¢ó£©´Ó£¨¢ò£©ÎÊÖеĿÉÒÔÁôËÞµÄѧÉúÈËÊýÖÐÑ¡¶¨ÆäÖÐ$\frac{1}{12}$µÄѧÉú·Ö³ÉÄÐÅ®Á½×飬¼ÙÉèÄÐÅ®ÈËÊý±ÈÀýΪ2£º1£¬ÄÇô´ÓÕâÁ½×éÖй²³éµ÷2È˳öÀ´ÁÐϯѧУµÄ½Ì´ú»á£¬ÔòÐÔ±ð²»Í¬µÄ¸ÅÂÊÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸