分析 由已知整理可得:b2+c2-a2=bc,利用余弦定理可得cosA=$\frac{1}{2}$,从而可求A,又由tanB=$\frac{\sqrt{2}}{4}$,B为三角形内角,利用同角三角函数基本关系式可求cosB,sinB的值,由正弦定理即可解得b的值.
解答 解:∵(a+b+c)(b+c-a)=3bc,
∴整理可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
又∵tanB=$\frac{\sqrt{2}}{4}$,B为三角形内角,
∴cosB=$\sqrt{\frac{1}{1+ta{n}^{2}B}}$=$\frac{2\sqrt{2}}{3}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{1}{3}$,
∴由正弦定理可得:$\frac{\sqrt{3}}{sin\frac{π}{3}}$=$\frac{b}{\frac{1}{3}}$,解得:b=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,特殊角的三角函数值在解三角形中的应用,考查了转化思想和计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{1}{50}$ | C. | $\frac{π}{3}$ | D. | 100πt+$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin$\frac{1}{2}$x | B. | y=sin($\frac{1}{2}$x-$\frac{π}{6}$) | C. | y=sin2x | D. | y=sin(2x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com