精英家教网 > 高中数学 > 题目详情
6.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*),若不等式$\frac{4}{{2}^{n}}$+$\frac{1}{n}$+tan≥0恒成立,则实数t的取值范围是[-6,+∞).

分析 对an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*)等号两端取倒数,整理可得即$\frac{1}{(n+1{)a}_{n+1}}$-$\frac{1}{{na}_{n}}$=1,又$\frac{1}{1{•a}_{1}}$=2,可判断数列{$\frac{1}{{na}_{n}}$}是以2为首项,1为公差的等差数列,从而可求得an=$\frac{1}{n(n+1)}$.依题意,可得-t≤$\frac{4n(n+1)}{{2}^{n}}$+n+1恒成立,构造函数h(n)=$\frac{4n(n+1)}{{2}^{n}}$+n+1,可求得其最小值,从而可得实数t的取值范围.

解答 解:∵an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*),
∴$\frac{1}{{a}_{n+1}}$=$\frac{(n+1){na}_{n}+(n+1)}{{na}_{n}}$=(n+1)+$\frac{n+1}{{na}_{n}}$,
即$\frac{1}{(n+1{)a}_{n+1}}$-$\frac{1}{{na}_{n}}$=1,又$\frac{1}{1{•a}_{1}}$=2,
∴数列{$\frac{1}{{na}_{n}}$}是以2为首项,1为公差的等差数列,
∴$\frac{1}{{na}_{n}}$=2+(n-1)=n+1,
∴an=$\frac{1}{n(n+1)}$.
∵不等式$\frac{4}{{2}^{n}}$+$\frac{1}{n}$+tan≥0恒成立,
∴-t≤$\frac{4n(n+1)}{{2}^{n}}$+n+1恒成立,
令h(n)=$\frac{4n(n+1)}{{2}^{n}}$+n+1,
则-t≤h(n)min
∵h(1)=4+1+1=6,
h(2)=6+2+1=9,
h(3)=6+3+1=10,
h(4)=5+4+1=10,
当n≥5时,n+1≥6,h(n)>6,
∴h(n)min=6.
∴-t≤6,
∴t≥-6.
故答案为:[-6,+∞).

点评 本题考查数列递推关系式的应用,突出考查等价转化思想与构造函数思想的综合运用,求得h(n)=$\frac{4n(n+1)}{{2}^{n}}$+n+1的最小值是关键,也是难点,亮点,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|AF|=6,cos∠FAB=$\frac{3}{5}$,则C的离心率e=$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-m.
(1)求函数f(x)的最小正周期与单调递增区间;
(2)若x∈[$\frac{5π}{24}$,$\frac{3π}{4}$]时,函数f(x)的最大值为0,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若定义在R上的偶函数y=f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{x}(x≤0)}\end{array}\right.$,则?x∈[-4,4],方程f(x)=g(x)不同解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列各数中,最小的数是④
?①75?②85(9)  ③210(6)    ④111111(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\left\{{\begin{array}{l}{{2^x}-1},{x>0}\\{-{x^2}-2x},{x≤0}\end{array}}$,若方程f(x)-m=0有三个实根,则m的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.集合A={x|y=$\frac{12}{x+3}$,x∈N,y∈Z},则A={0,1,3,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+$\frac{b}{x}$的图象经过点A(1,1),B(2,-1).
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;
(3)求f(x)在区间[$\frac{1}{4}$,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)对定义域R内的任意x都有f(2+x)=(2一x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x).若2<a<4,则f(log2a,f(2a),f(3)的大小关系为f(log2a)<f(3)<f(2a).(用“<”连接)

查看答案和解析>>

同步练习册答案