分析 由已知式子和正弦定理可得B=$\frac{π}{3}$,再由余弦定理可得ac≤16,即可求得a+c的最大值.
解答 解:∵在△ABC中$\frac{2a-c}{b}$=$\frac{cosC}{cosB}$,
∴(2a-c)cosB=bcosC,
∴(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
约掉sinA可得cosB=$\frac{1}{2}$,即B=$\frac{π}{3}$,
由余弦定理可得16=a2+c2-2accosB=a2+c2-ac≥2ac-ac,
∴ac≤16,当且仅当a=c时取等号,
∴16=a2+c2-ac=(a+c)2-3ac,可得:(a+c)2=16+3ac≤64,解得a+c≤8,当且仅当a=c时取等号.
故答案为:8.
点评 本题考查解三角形,涉及正余弦定理和基本不等式以及三角形的面积公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1 | B. | f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$ | ||
| C. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=x,g(x)=$\sqrt{{x}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a2+b2=0则a≠0且b≠0(a,b∈R) | B. | 若a=b≠0(a,b∈R),则a2+b2≠0 | ||
| C. | 若a≠0且b≠0(a,b∈R),则a2+b2≠0 | D. | 若a≠0或b≠0(a,b∈R),则a2+b2≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | $\frac{π}{2}$ | C. | $π或\frac{π}{2}$ | D. | 0或$\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com