精英家教网 > 高中数学 > 题目详情

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

直径分组

甲基地频数

10

30

120

175

125

35

5

乙基地频数

5

35

115

165

110

60

10

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为“桔柚直径与所在基地有关?”

甲基地

乙基地

合计

优质品

_________

_________

_________

非优质品

_________

_________

_________

合计

_________

_________

_________

(2)求优质品率较高的基地的500个桔柚直径的样本平均数(同一组数据用该区间的中点值作代表);

(3)记甲基地直径在范围内的五个桔柚分别为,现从中任取二个,求含桔柚的概率.

附:.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】(1)答案见解析;(2)80;(3).

【解析】分析:(1)由题意填写列联表,计算观测值,对照临界值得出结论;

(2)计算甲、乙基地桔柚的优质品率,求出优质品率较高的样本平均数;

(3)用列举法得出基本事件数,计算所求的概率值.

详解:(1)由以上统计数据填写2×2列联表如下:

甲基地

乙基地

合计

优质品

420

390

810

非优质品

80

110

190

合计

500

500

1000

计算K2==≈5.848>3.841,

所以有95%的把握认为:“桔柚直径与所在基地有关”;

(2)甲基地桔柚的优质品率为=84%,乙基地桔柚的优质品率为=78%,

所以甲基地桔柚的优质品率较高,

甲基地的500个桔柚直径的样本平均数为

=×(62×10+68×30+74×120+80×175+86×125+92×35+98×5)

=1.24+4.08+17.76+28.0+21.5+6.44+0.98

=80;

(3)依题意:记“从甲基地直径在[95,101]的五个桔柚A,B,C,D,E中任取二个,含桔柚A”为事件N;

实验包含的所有基本事件为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),

(B,E),(C,D),(C,E),(D,E)共10种;

事件N包含的结果有:(A,B),(A,C),(A,D),(A,E)共4种;

所求事件的概率为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为,不考虑其它因素的影响.

(1)用表示,并求实数使是等比数列;

(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程序框图如图,当输入x为2016时,输出的y的值为(

A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ和曲线C2:ρcosθ=3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.
(Ⅰ)求曲线C1和曲线C2的直角坐标方程;
(Ⅱ)若点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C′﹣ABC,且使
(Ⅰ)求证:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A﹣C′D﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数过点,且函数在点处的切线恰好是直线.

(Ⅰ)求函数的解析式;

(Ⅱ) 设函数,若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出s的值为11,那么输入的n值等于(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间将统计结果分成绘制成如图所示的频率分布直方图.

(1)求直方图中的值

(2)求续驶里程在的车辆数

(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

同步练习册答案