12£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£®ÇÒS1=2£¬Sn+1=2Sn+2£¨n¡ÊN*£©£¬bn=Sn+2£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÈôÊýÁÐ{cn}Âú×ãcn=$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+¡­+$\frac{{a}_{n}-1}{{2}^{n}}$£¨n¡ÊN*£©£¬Çó{cn}µÄǰnÏîºÍTn£®

·ÖÎö £¨1£©Ò×Öªb1=S1+2=4£¬ÓÉSn+1=2Sn+2¿ÉµÃbn+1=2bn£¬´Ó¶øÖ¤Ã÷£»
£¨2£©ÓÉ£¨1£©ÖªSn=2n+1-2£¬´Ó¶øÌÖÂÛÇóÊýÁеÄͨÏʽ£»
£¨3£©»¯¼òcn=n-£¨$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+¡­+$\frac{1}{{2}^{n}}$£©=n-1+$\frac{1}{{2}^{n}}$£¬´Ó¶ø²ðÏîÇóÆäºÍ£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºb1=S1+2=4£¬
¡ßSn+1=2Sn+2£¬¡àSn+1+2=2Sn+4=2£¨Sn+2£©£¬
¡àbn+1=2bn£¬
¹ÊÊýÁÐ{bn}ÊÇÒÔ4ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©Öª£¬bn=Sn+2=4•2n-1=2n+1£¬
¹ÊSn=2n+1-2£¬
µ±n=1ʱ£¬a1=S1=2£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=£¨2n+1-2£©-£¨2n-2£©=2n£¬
µ±n=1ʱÉÏʽҲ³ÉÁ¢£¬
¹Êan=2n£»
£¨3£©cn=$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+¡­+$\frac{{a}_{n}-1}{{2}^{n}}$=$\frac{2-1}{2}$+$\frac{{2}^{2}-1}{{2}^{2}}$+¡­+$\frac{{2}^{n}-1}{{2}^{n}}$
=n-£¨$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+¡­+$\frac{1}{{2}^{n}}$£©=n-1+$\frac{1}{{2}^{n}}$£¬
¹ÊTn=0+$\frac{1}{2}$+£¨1+$\frac{1}{{2}^{2}}$£©+¡­+£¨n-1+$\frac{1}{{2}^{n}}$£©
=$\frac{0+n-1}{2}$•n+1-$\frac{1}{{2}^{n}}$
=$\frac{1}{2}$n£¨n-1£©+1-$\frac{1}{{2}^{n}}$£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÄÐÔÖʵÄÅжÏÓëÓ¦Óã¬Í¬Ê±¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼ÏëÓ¦Óü°²ðÏî·¨µÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôOΪ¡÷ABCÄÚÒ»µã£¬ÇÒ2$\overrightarrow{OA}$$+7\overrightarrow{OB}$$+6\overrightarrow{OC}$=$\overrightarrow{0}$£¬Èý½ÇÐÎABCµÄÃæ»ýÊÇÈý½ÇÐÎOABÃæ»ýµÄ¦Ë±¶£¬Ôò¦Ë=£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®$\frac{15}{2}$C£®$\frac{15}{7}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª$\overrightarrow{AB}$¡Í$\overrightarrow{AC}$£¬|$\overrightarrow{AB}-\overrightarrow{AC}$|=2£¬DÊDZßBCµÄÖе㣬$\overrightarrow{AE}$=$\frac{1}{3}\overrightarrow{AB}$
£¨1£©Çó|$\overrightarrow{AD}$|
£¨2£©ÈôADÓëCEÏཻÓÚµãF£®ÊÔÓÃ$\overrightarrow{AB}$ºÍ$\overrightarrow{AC}$±íʾ$\overrightarrow{AF}$
£¨3£©ÈôµãMÊÇÏß¶ÎBCÉϵÄÒ»µã£¬ÇÒ$\overrightarrow{AM}•£¨\overrightarrow{AB}+\overrightarrow{AC£©}$=1£¬Çó|$\overrightarrow{AM}$|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌÊÇy=8£¬Ô²CµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=2cos¦Õ\\ y=2+2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£®ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÖ±ÏßlºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏßOM£º¦È=¦Á£¨ÆäÖÐ$0£¼¦Á£¼\frac{¦Ð}{2}$£©ÓëÔ²C½»ÓÚO¡¢PÁ½µã£¬ÓëÖ±Ïßl½»ÓÚµãM£¬ÉäÏßON£º$¦È=¦Á+\frac{¦Ð}{2}$ÓëÔ²C½»ÓÚO¡¢QÁ½µã£¬ÓëÖ±Ïßl½»ÓÚµãN£¬Çó$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$µÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóÈý½ÇÐÎOMNµÄÄÚÇÐÔ²Ô²ÐĵĹ켣·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈçͼËùʾ£¬º¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©ÀëyÖá×î½üµÄÁãµãÓë×î´óÖµ¾ùÔÚÅ×ÎïÏßy=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1ÉÏ£¬Ôòf£¨x£©=sin£¨$\frac{¦Ð}{2}$x+$\frac{¦Ð}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô13sin¦Á+5cos¦Â=9£¬13cos¦Á+5sin¦Â=15£¬Ôòsin£¨¦Á+¦Â£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{56}{65}$B£®$\frac{33}{65}$C£®$\frac{5}{6}$D£®$\frac{16}{65}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Éèf£¨x£©=$\left\{\begin{array}{l}{sin£¨\frac{¦Ð}{2}x+\frac{¦Ð}{3}£©£¨x¡Ü2010£©}\\{f£¨x-4£©£¨x£¾2010£©}\end{array}\right.$Ôòf£¨2009£©+f£¨2010£©+f£¨2011£©+f£¨2012£©=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|¡Ù0£¬ÇÒ¹ØÓÚxµÄ·½³Ìx2+|$\overrightarrow{a}$|x+$\overrightarrow{a}$•$\overrightarrow{b}$=0ÓÐÁ½¸öÏàµÈµÄʵ¸ù£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÊýÁÐ{an}ÊǸ÷ÏîΪʵÊýµÄµÈ±ÈÊýÁУ¬Ôò¡°a2£¾a1£¾0¡±ÊÇ¡°ÊýÁÐ{an}ΪµÝÔöÊýÁС±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®²»³ä·Ö²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸