精英家教网 > 高中数学 > 题目详情
8.已知关于x的不等式ax2+bx+c>0的解集为{x|-1<x<2},求不等式a(x2+1)+b(x-1)+c>2ax的解集.

分析 关于x的不等式ax2+bx+c>0的解集为{x|-1<x<2},可得-1,2是一元二次方程ax2+bx+c=0的两个实数根,且a<0,利用根与系数的关系可得a,b,即可不等式a(x2+1)+b(x-1)+c>2ax得出.

解答 解:∵关于x的不等式ax2+bx+c>0的解集为{x|-1<x<2},
∴-1+2=-$\frac{b}{a}$,-1×2=$\frac{c}{a}$,a<0,
解得b=-a,c=-2a
不等式a(x2+1)+b(x-1)+c>2ax化为x2-3x<0
解得0<x<3,
∴该不等式的解集为(0,3).

点评 本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知三个正数a,b,c为等比数列,则$\frac{a+c}{b}$+$\frac{b}{a+c}$的最小值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=lnx+3x-10的零点所在的大致范围是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,四边形ABCD的四个顶点在半径为2的圆O上,若∠BAD=$\frac{π}{3}$,CD=2,则BC=(  )
A.2B.4C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=ax2+(a-2)x-2(a∈R).
(I)解关于x的不等式f(x)≥0;
(II)若a>0,当-1≤x≤1时,f(x)≤0时恒成立,求a的取值范围.
(III)若当-1<a<1时,f(x)>0时恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设Sn为数列{an}的前项和,已知a1≠0,2an-a1=S1•Sn,则数列{nan}的前n项和为(n-1)×2n+1.n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=log2(2-$\frac{1}{x}$)(x>0)的反函数f-1(x)=$\frac{1}{2-{2}^{x}}$(x<1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.将一张纸沿直线l对折一次后,点A(0,4)与点B(8,0)重叠,点C(6,8)与点D(m,n)重叠.
(1)求直线l的方程;
(2)求m+n的值;
(3)直线l上是否存在一点P,使得||PB|-|PC||存在最大值,如果存在,请求出最大值,以及此时点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|$\frac{1}{3}$≤($\frac{1}{3}$)x-1≤9},集合B={x|log2x<3},集合C={x|x2-(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(∁UB)∪A;
(2)若A∪C=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案