精英家教网 > 高中数学 > 题目详情
(本小题12分)
给定抛物线是抛物线的焦点,过点的直线相交于两点,为坐标原点.
(Ⅰ)设的斜率为1,求以为直径的圆的方程;
(Ⅱ)设,求直线的方程.
(Ⅰ)(Ⅱ)

试题分析:(Ⅰ)解:直线的斜率为1,
直线的方程为:,代入,得:
由根与系数的关系得:,易得中点即圆心的坐标为

所求的圆的方程为:.                            ……4分
(Ⅱ)直线的斜率存在,
设直线的斜率为,则直线的方程为:
,代入,得:
由根与系数的关系得:


直线的方程为:.                                    ……12分
点评:直线与圆锥曲线的位置关系是考查的重点内容也是常考的内容,思路不难,但是运算量比较大,而且根与系数的关系经常用到,应该加强训练.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴交于点M,且y1y2=-1,

(Ⅰ)求证:点的坐标为
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△AOB面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知抛物线的焦点F,直线l过点
(1)若点F到直线l的距离为,求直线l的斜率;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M,求证:线段AB中点的横坐标为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点的抛物线的标准方程是                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线及点,直线的斜率为1且不过点P,与抛物线交于A,B两点。
(1) 求直线轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C,D,证明:AD、BC交于定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一抛物线形拱桥,中午点时,拱顶离水面米,桥下的水面宽米;下午点,水位下降了米,桥下的水面宽              米.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一桥拱的形状为抛物线,已知该抛物线拱的宽为8米,抛物线拱的面积为160平方米,则抛物线拱的高等于            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案