精英家教网 > 高中数学 > 题目详情
现有5名男司机,4名女司机,需选派5人运货到吴忠.
(1)如果派3名男司机、2名女司机,共多少种不同的选派方法?
(2)至少有两名男司机,共多少种不同的选派方法?
考点:计数原理的应用
专题:应用题,排列组合
分析:(1)利用分步乘法原理,可得结论;
(2)利用分类加法与分步乘法原理,可得结论.
解答: 解:(1)利用分步乘法原理:
C
3
5
C
2
4
=60
(2)利用分类加法与分步乘法原理:
C
2
5
C
3
4
+
C
3
5
C
2
4
+
C
4
5
C
1
4
+
C
5
5
C
0
4
=121.
点评:本题考查分步计数原理的应用,解题时一定要分清做这件事需要分为几步,每一步包含几种方法,看清思路,把几个步骤中数字相乘得到结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解不等式:
1
mx-2
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=mx-
m
x
-2lnx(m∈R)
(1)若f(x)在[1,+∞)上为单调函数,求m的取值范围;
(2)设g(x)=
2e
x
,若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2n+1,数列{bn}满足bn=
1
(n+1)log2an
+n.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=x2+ax-lnx,g(x)=ex.(其中e是自然对数的底数)
(1)当a=-1时,求函数y=f(x)的极值;
(2)令F(x)=
f(x)
g(x)
,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是椭圆W:
x2
4
+y2=1上的三个点,O是坐标原点,当点B不是W的顶点时,判断四边行OABC是否是矩形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+bx+c在点(1,2)处的切线与直线x+y+2=0垂直,求函数y=x2+bx+c的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校一位教师要去某地参加全国数学优质课比赛,已知他乘火车、轮船、汽车、飞机直接去的概率分别为0.3、0.1、0.2、0.4.
(Ⅰ)求他乘火车或乘飞机去的概率;
(Ⅱ)他不乘轮船去的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:b4-56b2-128b-48=0.

查看答案和解析>>

同步练习册答案