分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的极值即可;
(Ⅱ)不妨设x1>x2>1,原不等式等价于f(x1)-f(x2)>kx1-kx2,令h(x)=f(x)-kx=x2-(3+k)x+lnx,问题等价于h′(x)=2x-(3+k)+$\frac{1}{x}$≥0在(1,+∞)上恒成立,得到3+k≤2x+$\frac{1}{x}$在(1,+∞)上恒成立,根据函数的单调性求出k的范围即可.
解答 解:(Ⅰ)f(x)的定义域为(0,+∞),
f′(x)=2x-3+$\frac{1}{x}$=$\frac{(2x-1)(x-1)}{x}$,
当x变化时,f′(x),f(x)的变化情况如下表:
| x | (0,$\frac{1}{2}$) | $\frac{1}{2}$ | ($\frac{1}{2}$,1) | 1 | (1,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最少有1枚正面和最多有1枚正面 | B. | 最少有2枚正面和恰有1枚正面 | ||
| C. | 最多有1枚正面和最少有2枚正面 | D. | 最多有1枚正面和恰有2枚正面 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{i-1}{n}$,$\frac{i}{n}$] | B. | [$\frac{i}{n}$,$\frac{i+1}{n}$] | C. | [$\frac{2(i-2)}{n}$,$\frac{2(i-1)}{n}$] | D. | [$\frac{2(i-1)}{n}$,$\frac{2i}{n}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4.0 | a-5.4 | -0.5 | 0.5 | b-0.6 |
| A. | 增加1.4个单位 | B. | 减少1.4个单位 | C. | 增加7.9个单位 | D. | 减少7.9个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 5 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com