精英家教网 > 高中数学 > 题目详情
9.下表给出的是两个具有线性相关关系的变量x,y的一组样本数据:
x34567
y4.0a-5.4-0.50.5b-0.6
得到的回归方程为y=bx+a.若已知上述样本数据的中心为(5,0.9),则当x每增加1个单位时,y就(  )
A.增加1.4个单位B.减少1.4个单位C.增加7.9个单位D.减少7.9个单位

分析 求出a,b的关系,将样本数据的中心代入回归方程求出a,b的值,从而求出回归方程,求出答案即可.

解答 解:$\overline{y}$=$\frac{1}{5}$(4+a-5.4-0.5+0.5+b-0.6)=$\frac{1}{5}$(a+b-2)=0.9,
故a+b-2=4.5,解得:a=6.5-b,
将(5,0.9)代入方程得:
0.9=5b+6.5-b,解得:b=-1.4,a=7.9,
故y=-1.4x+7.9,
故当x每增加1个单位时,y减少1.4个单位,
故选:B.

点评 本题考查了求回归方程问题,考查样本数据的中心,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.化简sin(x+y)sinx+cos(x+y)cosx等于cosy.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x和y之间的一组数据:
x1357
y2345
则y与x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过点(4,3.5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z1=-1+i,z2=1+i,z3=1+4i,它们所对应的点分别是A,B,C,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则x+y的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-3x+lnx.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对于任意的x1,x2∈(1,+∞),x1≠x2,都有$|{\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}}|>k$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产的零件中有缺点的零件数随机器运转的速度而变化,如表为抽样数据:
转速x(转/秒)1614128
每小时生产有缺点的零件数y(件)11985
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)根据散点图判断,y=ax+b与$y=c\sqrt{x}+d$哪一个适宜作为每小时生产的零件中有缺点的零件数y关于转速x的回归方程类型 (给出判断即可,不必说明理由),根据判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)若实际生产中,允许每小时生产的零件中有缺点的零件数最多为10个,那么机器的运转速度应控制在什么范围内?
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|(2x-5)(x+3)>0},B={1,2,3,4,5},则(∁RA)∩B=(  )
A.{1,2,3}B.{2,3}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知两点A(-1,1),B(3,5),点C在曲线y=2x2上运动,则$\overrightarrow{AB}•\overrightarrow{AC}$的最小值为(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合M={x|x2+5x-14<0},N={x|m<x<m+3},且M∩N=∅,则m的取值范围为(  )
A.(-10,2)B.(-∞,-10)∪(2,+∞)C.[-10,2]D.(-∞,-10]∪[2,+∞)

查看答案和解析>>

同步练习册答案