精英家教网 > 高中数学 > 题目详情
19.化简sin(x+y)sinx+cos(x+y)cosx等于cosy.

分析 直接运用两角差的余弦公式计算,或者利用和与差的公式打开,合并化简也可以.

解答 解:法一,直接运用两角差的余弦公式:sin(x+y)sinx+cos(x+y)cosx=cos(x+y-x)=cosy.
法二:如果不熟练,看不出来,和与差的公式打开,合并化简:
sin(x+y)sinx+cos(x+y)cosx=sin2xcosy+cosxsinysinx+cos2xcosy-cosxsinxsiny
=cos2xcosy+cosysin2x=cosy(sin2x+cos2x)=cosy.
故答案为cosy.

点评 本题考查的知识点是两角和与差的正余弦公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)若b=$\frac{{2\sqrt{6}}}{3}$,求角B;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=-\frac{1}{3}{x^3}+m{x^2}+x+1$在区间[1,2]上单调递增,则m的取值范围是m≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列四个命题:
①若α、β均为第一象限角,且α>β,则sin α>sinβ;
②若函数y=2cos(ax-$\frac{π}{3}$)的最小正周期是4π,则a=$\frac{1}{2}$;
③函数y=$\frac{sin2x-sinx}{sinx-1}$是奇函数;
④函数y=sin(x-$\frac{π}{2}$)在[0,π]上是增函数;
其中正确命题的序号为④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t为参数)$,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ2(4cos2θ+sin2θ)=16.
(1)写出直线l的普通方程与曲线C的参数方程;
(2)设M(x,y)为曲线C上任意一点,求$\sqrt{3}x+\frac{1}{2}y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx
(1)求f(x)在点(1,f(1))处的切线方程;
(2)若函数$F(x)=\frac{f(x)-a}{x}$在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数z=1+i,若$\frac{{{z^2}+az+b}}{{{z^2}-z+1}}=1-i$,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆x2-2x+y2=3关于y轴对称的圆的一般方程是x2+2x+y2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下表给出的是两个具有线性相关关系的变量x,y的一组样本数据:
x34567
y4.0a-5.4-0.50.5b-0.6
得到的回归方程为y=bx+a.若已知上述样本数据的中心为(5,0.9),则当x每增加1个单位时,y就(  )
A.增加1.4个单位B.减少1.4个单位C.增加7.9个单位D.减少7.9个单位

查看答案和解析>>

同步练习册答案