14£®Æ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.£¨tΪ²ÎÊý£©$£¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ2£¨4cos2¦È+sin2¦È£©=16£®
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌÓëÇúÏßCµÄ²ÎÊý·½³Ì£»
£¨2£©ÉèM£¨x£¬y£©ÎªÇúÏßCÉÏÈÎÒâÒ»µã£¬Çó$\sqrt{3}x+\frac{1}{2}y$µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.£¨tΪ²ÎÊý£©$£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºlµÄÆÕͨ·½³Ì£®ÓɦÑ2£¨4cos2¦È+sin2¦È£©=16µÃ4¦Ñ2cos2¦È+¦Ñ2sin2¦È=16£¬ÀûÓû¥»¯¹«Ê½£¬ËùÒÔÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=2cos¦È\\ y=4sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$£®
£¨2£©MÔÚÇúÏß..ÉÏ£¬ËùÒÔÉèM£¨2cos¦È£¬4sin¦È£©£¬´úÈë¿ÉµÃ$\sqrt{3}$x+$\frac{1}{2}$y=4sin$£¨¦È+\frac{¦Ð}{3}£©$£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.£¨tΪ²ÎÊý£©$£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºlµÄÆÕͨ·½³ÌΪ£º$\sqrt{3}x+y-1-2\sqrt{3}=0$£¬
ÓɦÑ2£¨4cos2¦È+sin2¦È£©=16µÃ4¦Ñ2cos2¦È+¦Ñ2sin2¦È=16µÃ4x2+y2=16£¬¼´$\frac{x^2}{4}+\frac{y^2}{16}=1$£®
ËùÒÔÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=2cos¦È\\ y=4sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$£»
£¨2£©MÔÚÇúÏßCÉÏ£¬ËùÒÔÉèM£¨2cos¦È£¬4sin¦È£©£¬
Ôò$\sqrt{3}$x+$\frac{1}{2}$y=$\sqrt{3}¡Á2cos¦È$+$\frac{1}{2}¡Á4sin¦È$=2$\sqrt{3}$cos¦È+2sin¦È=4sin$£¨¦È+\frac{¦Ð}{3}£©$£¬
ÒòΪ0¡Ü¦È£¼2¦Ð£¬$-1¡Üsin£¨¦È+\frac{¦Ð}{3}£©$¡Ü1£¬
¡à-4¡Ü$\sqrt{3}$x+$\frac{1}{2}$y¡Ü4£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»ØÈ¥ÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Èý½Çº¯ÊýÇóÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF£¬µãA¡¢BÔÚÅ×ÎïÏßÉÏ£¬ÇÒ¡ÏAFB=90¡ã£¬ÏÒABÖеãMÔÚ×¼ÏßlÉϵÄÉäӰΪM1£¬Ôò$\frac{{|{M{M_1}}|}}{{|{AB}|}}$µÄ×î´óֵΪ$\frac{{\sqrt{2}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨1£©½â²»µÈʽ|2x+1|+|x-2|¡Ý5
£¨2£©ÒÑÖªx¡ÊR£¬a=x2-1£¬b=2x+2£®ÇóÖ¤a£¬bÖÐÖÁÉÙÓÐÒ»¸öÊǷǸºÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª$\overrightarrow{a}$=£¨4£¬5cos¦Á£©£¬$\overrightarrow{b}$=£¨3£¬-4tan¦Á£©¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬$\overrightarrow{a}$¡Í$\overrightarrow{b}$£®
£¨1£©Çó$|{\overrightarrow a-\overrightarrow b}|$£»
£¨2£©Çó$sin£¨\frac{3¦Ð}{2}+2¦Á£©+cos£¨2¦Á-¦Ð£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÈñ½ÇÈý½ÇÐÎABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬ÒÑÖªa£¬bÊÇ·½³Ìx2-2$\sqrt{3}$x+2=0µÄÁ½¸ö¸ù£¬ÇÒ2sin£¨A+B£©-$\sqrt{3}$=0£¬Ôòc=£¨¡¡¡¡£©
A£®4B£®$\sqrt{6}$C£®2$\sqrt{3}$D£®3$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®»¯¼òsin£¨x+y£©sinx+cos£¨x+y£©cosxµÈÓÚcosy£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Æ½ÃæÄÚ¸ø¶¨Èý¸öÏòÁ¿$\overrightarrow{a}$=£¨3£¬-2£©£¬$\overrightarrow{b}$=£¨-1£¬y£©£¬$\overrightarrow{c}$=£¨x£¬5£©£¬
£¨1£©Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÇóʵÊýy£»       
£¨2£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{c}$£¬ÇóʵÊýx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=aex£¨x+2£©£¬g£¨x£©=x2+bx+2£¬ÒÑÖªËüÃÇÔÚx=0´¦ÓÐÏàͬµÄÇÐÏߣ®
£¨1£©Çóº¯Êýf£¨x£©£¬g£¨x£©µÄ½âÎöʽ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ[t£¬t+1]£¨t£¾-4£©ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=x2-3x+lnx£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Èô¶ÔÓÚÈÎÒâµÄx1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1¡Ùx2£¬¶¼ÓÐ$|{\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}}|£¾k$ºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸