精英家教网 > 高中数学 > 题目详情
11.已知抛物线y2=4x的焦点为F,点A、B在抛物线上,且∠AFB=90°,弦AB中点M在准线l上的射影为M1,则$\frac{{|{M{M_1}}|}}{{|{AB}|}}$的最大值为$\frac{{\sqrt{2}}}{2}$.

分析 设|AF|=a、|BF|=b,由抛物线定义结合梯形的中位线定理,得2|MM1|=|AQ|+|BP|=a+b.再由勾股定理得|AB|2=a2+b2,结合基本不等式求得|AB|的范围,从而可得$\frac{{|{M{M_1}}|}}{{|{AB}|}}$的最大值.

解答 解:设|AF|=a,|BF|=b,A、B在准线上的射影点分别为Q、P,连接AQ、BQ  
由抛物线定义,得|AF|=|AQ|且|BF|=|BP|
在梯形ABPQ中根据中位线定理,得2|MM1|=|AQ|+|BP|=a+b.
由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2-2ab,
又∵ab≤($\frac{a+b}{2}$) 2
∴(a+b)2-2ab≥(a+b)2-2×($\frac{a+b}{2}$) 2=$\frac{1}{2}$(a+b)2
得到|AB|≥$\frac{\sqrt{2}}{2}$(a+b).
所以$\frac{{|{M{M_1}}|}}{{|{AB}|}}$≤$\frac{{\sqrt{2}}}{2}$,即$\frac{{|{M{M_1}}|}}{{|{AB}|}}$的最大值为$\frac{{\sqrt{2}}}{2}$,
故答案为$\frac{{\sqrt{2}}}{2}$.

点评 本题给出抛物线的弦AB对焦点F所张的角为直角,求AB中点M到准线的距离与AB比值的取值范围,着重考查了抛物线的定义与简单几何性质、梯形的中位线定理和基本不等式求最值等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)={e^x}-\frac{1}{2}{x^2}-mx$有极值点,则实数m的取值范围是(  )
A.m≥1B.m>1C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若程序框图如图所示,则输出的结果为(  )
A.9B.16C.25D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b=$\sqrt{10}$,a+c=ac,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn满足Sn+1=Sn+$\frac{n+1}{3n}$•an(n∈N*),且a1=1.
(Ⅰ)证明:数列{$\frac{{a}_{n}}{n}$}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)若b=$\frac{{2\sqrt{6}}}{3}$,求角B;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{alnx+(x-c)^{2},x≥c}\\{alnx-(x-c)^{2},0<x<c}\end{array}\right.$(其中a<0,c>0)
(1)当a=2c-2时,若f(x)≥$\frac{1}{4}$对任意x∈(c,+∞)恒成立,求实数a的取值范围;
(2)设函数f(x)的图象在两点P(x1,f(x1)),Q(x2,f(x2)处的切线分别为l1、l2,若x1=$\sqrt{-\frac{a}{2}}$,x2=c,且l1丄l2,求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=[x2-(a-3)x-b](2x-$\frac{1}{2}$),当x<0时,f(x)≤0,则a的取值范围为(  )
A.a≥2B.a≤2C.a<2D.0<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=1+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t为参数)$,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ2(4cos2θ+sin2θ)=16.
(1)写出直线l的普通方程与曲线C的参数方程;
(2)设M(x,y)为曲线C上任意一点,求$\sqrt{3}x+\frac{1}{2}y$的取值范围.

查看答案和解析>>

同步练习册答案