| A. | a≥2 | B. | a≤2 | C. | a<2 | D. | 0<a<2 |
分析 令g(x)=x2-(a-3)x-b,根据2x-$\frac{1}{2}$的符号判断g(x)在(-∞,0)上的符号变化情况,根据二次函数的性质列出不等式即可得出a的范围.
解答 解:令g(x)=x2-(a-3)x-b,
∵当x<-1时,2x-$\frac{1}{2}$<0,当-1<x<0时,2x-$\frac{1}{2}$>0,且当x<0时,f(x)≤0,
∴g(x)≥0在(-∞,-1)上恒成立,g(x)≤0在(-1,0)上恒成立.
∴$\left\{\begin{array}{l}{g(-1)=0}\\{g(0)≤0}\end{array}\right.$,即$\left\{\begin{array}{l}{1+(a-3)-b=0}\\{-b≤0}\end{array}\right.$,解得a≥2.
故选:A.
点评 本题考查了指数函数,二次函数的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | m≥$\frac{5}{2}$ | B. | m>$\frac{5}{2}$ | C. | m≤$\frac{5}{2}$ | D. | m<$\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (e,+∞) | B. | (0,e) | C. | [1,e) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥0} | B. | {x|0≤x<2} | C. | {x|x<2} | D. | {x|x≥2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com