| A. | m≥$\frac{5}{2}$ | B. | m>$\frac{5}{2}$ | C. | m≤$\frac{5}{2}$ | D. | m<$\frac{5}{2}$ |
分析 要找m的取值使f(x)+6≥0恒成立,思路是求出f′(x)并令其等于零找出函数的驻点,得到函数f(x)的最小值,使最小值大于等于-6即可求出m的取值范围.
解答 解析:因为函数f(x)=$\frac{1}{2}$x4-2x3+3m,
所以f′(x)=2x3-6x2,
令f′(x)=0,得x=0或x=3,
经检验知x=3是函数的一个最小值点,
所以函数的最小值为f(3)=3m-$\frac{27}{2}$,
因为不等式f(x)+6≥0恒成立,即f(x)≥-6恒成立,
所以3m-$\frac{27}{2}$≥-6,解得m≥$\frac{5}{2}$,
故选:A.
点评 本题考查了利用导数求闭区间上函数的最值、函数恒成立问题等等知识点,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | m≥1 | B. | m>1 | C. | 0≤m≤1 | D. | 0<m<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥2 | B. | a≤2 | C. | a<2 | D. | 0<a<2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com