精英家教网 > 高中数学 > 题目详情
5.在实数集R中定义一种运算“*”,对于任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(ex)*$\frac{1}{e^x}$的性质,有如下命题:
(1)f(x)为偶函数;
(2)f(x)的x=0处取极小值;
(3)f(x)的单调增区间为(-∞,0];
(4)方程f(x)=4有唯一实根.
其中正确的命题的序号是(1)(2).

分析 依题意,可求得函数f(x)=1+ex+$\frac{1}{{e}^{x}}$,利用函数的奇偶性的定义可判断(1)正确;利用f′(x)=ex-e-x=$\frac{{e}^{2x}-1}{{e}^{x}}$,通过对x>0与x<0的情况的讨论,可判断(2)正确,(3)错误;方程f(x)=4?1+ex+$\frac{1}{{e}^{x}}$=4?ex+$\frac{1}{{e}^{x}}$=3,解得:ex=$\frac{3±\sqrt{5}}{2}$,x=ln$\frac{3±\sqrt{5}}{2}$,可判断(4)错误.

解答 解:依题意,f(x)=(ex)*$\frac{1}{e^x}$=(ex*$\frac{1}{e^x}$)*0=0*(ex•e-x)+(ex*0)+(0*$\frac{1}{{e}^{x}}$)-2×0=1+ex+$\frac{1}{{e}^{x}}$,
对于(1),∵f(-x)=1+e-x+ex=f(x),∴f(x)为偶函数,故(1)正确;
对于(2),∵f′(x)=ex-e-x=$\frac{{e}^{2x}-1}{{e}^{x}}$,
当x>0时,f′(x)>0,函数f(x)=1+ex+$\frac{1}{{e}^{x}}$在区间(0,+∞)上单调递增,
当x<0时,f′(x)<0,函数f(x)=1+ex+$\frac{1}{{e}^{x}}$在区间(-∞,0)单上调递减,
∴f(x)的x=0处取极小值,故(2)正确;
对于(3),由(2)知,函数f(x)=1+ex+$\frac{1}{{e}^{x}}$在区间(0,+∞)上单调递增,在区间(-∞,0)单调递减,故(3)错误;
对于(4),方程f(x)=4?1+ex+$\frac{1}{{e}^{x}}$=4?ex+$\frac{1}{{e}^{x}}$=3,解得:ex=$\frac{3±\sqrt{5}}{2}$,x=ln$\frac{3±\sqrt{5}}{2}$,即方程f(x)=4有2个相异的实根,故(4)错误.
综上所述,正确的命题的序号是:(1)(2).
故答案为:(1)(2).

点评 本题考查命题的真假判断与应用,考查新定义的理解与应用,求得函数f(x)=1+ex+$\frac{1}{{e}^{x}}$是关键,也是难点,考查函数的奇偶性、单调性、极值及方程的根的个数判断,考查导数的应用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在三角形ABC中,角A,B,C所对的边分别是a,b,c.已知b=3,c=2.
(1)若2a•cosC=3,求a的值;
(2)若$\frac{c}{b}=\frac{cosC}{1+cosB}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四个命题中错误的是(  )
A.在一次试卷分析中,从每个考室中抽取第5号考生的成绩进行统计,不是简单随机抽样
B.对一个样本容量为100的数据分组,各组的频数如下:
区间[17,19)[19,21)[21,23)[23,25)[25,27)[27,29)[29,31)[31,33]
频数113318162830
估计小于29的数据大约占总体的58%
C.设产品产量与产品质量之间的线性相关系数为-0.91,这说明二者存在着高度相关
D.通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如表列联表:
总计
走天桥402060
走斑马线203050
总计6050110
由${K^2}=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}=7.8$,则有99%以上的把握认为“选择过马路方式与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数$y=sin({2x+\frac{π}{6}})$的图象向左平移$\frac{π}{6}$个单位,得到函数y=f(x)的图象,则下列关于函数y=f(x)的说法正确的是(  )
A.奇函数B.周期是$\frac{π}{2}$
C.关于直线$x=\frac{π}{12}$对称D.关于点$({-\frac{π}{4},0})$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设$f(x)=sinxcosx-{cos^2}({x+\frac{π}{4}}),x∈R$.
(I)求f(x)的单调递增区间;
(II)在锐角△ABC中,A、B、C的对边分别为a,b,c,若$f({\frac{A}{2}})=0,a=1$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{1}{2}$x4-2x3+3m(x∈R),若f(x)+6≥0恒成立,则实数m的取值范围是(  )
A.m≥$\frac{5}{2}$B.m>$\frac{5}{2}$C.m≤$\frac{5}{2}$D.m<$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知|BC|=4,且$\frac{{|{AB}|}}{{|{AC}|}}=λ$,求点A的轨迹方程,并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{|x-1|(x≤1)}\\{{3}^{x}(x>1)}\end{array}\right.$,则f(f(-2))=27,若f(a)=2,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{2sin50°+sin80°(1+tan60°tan10°)}{\sqrt{1+sin100°}}$=(  )
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案