精英家教网 > 高中数学 > 题目详情
20.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)≥0的解集为[0,$\frac{1}{2}$]∪[2,+∞).

分析 由函数y=f(x)(x∈R)的图象可得函数的单调性,根据单调性与导数的关系得导数的符号,进而得不等式xf′(x)≤0的解集.

解答 解:由f(x)图象特征可得,
f′(x)在(-∞,$\frac{1}{2}$]∪[2,+∞)上大于0,在($\frac{1}{2}$,2)上小于0,
∴xf′(x)≥0?$\left\{\begin{array}{l}{x≥0}\\{f′(x)≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x≤0}\\{f′(x)≤0}\end{array}\right.$?0≤x≤$\frac{1}{2}$或x≥2,
∴xf′(x)≥0的解集为[0,$\frac{1}{2}$]∪[2,+∞).
故答案为:$[0,\frac{1}{2}]∪[2,+∞)$

点评 本题考查导数与函数单调性的关系,考查学生的识图能力,利用导数求函数的单调性是重点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)与双曲线$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦点,则m+n的取值范围是(  )
A.(0,6]B.[3,6]C.(3$\sqrt{2}$,6]D.[6,9)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.则组成的三位数中是3的倍数的有228个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=\frac{1-x}{{1+{x^2}}}{e^x}$,x1,x2为两不同实数,当f(x1)=f(x2)时,有(  )
A.x1+x2>0B.x1+x2<0C.x1+x2=0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在三角形ABC中,角A,B,C所对的边分别是a,b,c.已知b=3,c=2.
(1)若2a•cosC=3,求a的值;
(2)若$\frac{c}{b}=\frac{cosC}{1+cosB}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,如果有性质acosA=bcosB,这个三角形的形状是(  )
A.等边三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ABC=90°,点E、F分别是棱AB、BB1的中点,当二面角C1-AA1-B为45o时,直线EF和BC1所成的角为(  )
A.45oB.60oC.90oD.120o

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将4个不同的小球放入3个不同的盒子,其中有的盒子可能没有放球,则总的方法共有(  )
A.81种B.64种C.36种D.18种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{1}{2}$x4-2x3+3m(x∈R),若f(x)+6≥0恒成立,则实数m的取值范围是(  )
A.m≥$\frac{5}{2}$B.m>$\frac{5}{2}$C.m≤$\frac{5}{2}$D.m<$\frac{5}{2}$

查看答案和解析>>

同步练习册答案