精英家教网 > 高中数学 > 题目详情
9.将4个不同的小球放入3个不同的盒子,其中有的盒子可能没有放球,则总的方法共有(  )
A.81种B.64种C.36种D.18种

分析 根据题意,分析可得每个小球都有4种可能的放法,直接由分步计数原理计算可得答案.

解答 解:根据题意,每个小球都有3种可能的放法,
根据分步计数原理知共有即34=81种不同的放法,
故选A.

点评 本题考查分步计数原理的运用,注意题干没有限制盒子里小球的数目,不能用排列、组合公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.平面向量$\overrightarrow a=(3,4),\overrightarrow b=(4,3),\overrightarrow c=λ\overrightarrow a-\overrightarrow b(λ∈R)$,且$\overrightarrow c$与$\vec a$的夹角等于$\overrightarrow c$与$\overrightarrow b$的夹角,则λ=(  )
A.1B.2C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)≥0的解集为[0,$\frac{1}{2}$]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,2x>0,那么命题¬p为(  )
A.?x∈R,2x<0B.?x∈R,2x<0C.?x∈R,2x≤0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a=({1,0}),\overrightarrow b=({-2,1})$.
(1)若$k\overrightarrow a-\overrightarrow b$与$\overrightarrow a+3\overrightarrow b$垂直,求k的值;
(2)若$k\overrightarrow a-\overrightarrow b$与$\overrightarrow a+3\overrightarrow b$平行,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知回归方程$\stackrel{∧}{y}$=2x+1,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是(  )
A.0.01B.0.02C.0.03D.0.04

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)={e^x}-\frac{1}{2}{x^2}-mx$有极值点,则实数m的取值范围是(  )
A.m≥1B.m>1C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$0<α<\frac{π}{2},0<β<\frac{π}{2},cosα=\frac{3}{5},cos({β+α})=\frac{5}{13}$.
(I)求sinβ的值;
(II)求$\frac{sin2α}{{{{cos}^2}α+cos2α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b=$\sqrt{10}$,a+c=ac,求△ABC的面积.

查看答案和解析>>

同步练习册答案