精英家教网 > 高中数学 > 题目详情
3.判断下列函数是否为奇函数:
(1)f(x)=$\frac{1}{x}$+2;
(2)f(x)=x3+2;
(3)f(x)=$\root{3}{x}$.

分析 确定函数的定义域,利用奇偶函数的定义进行判断即可.

解答 解:(1)f(x)=$\frac{1}{x}$+2,定义域为{x|x≠0},f(-x)=-$\frac{1}{x}$+2≠f(x),且≠-f(x),∴非奇非偶;
(2)f(x)=x3+2,定义域为R,f(-x)=-x3+2≠f(x),且≠-f(x),∴非奇非偶;
(3)f(x)=$\root{3}{x}$,定义域为R,f(-x)=-$\root{3}{x}$=-f(x),∴是奇函数.

点评 本题考查函数的奇偶性,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求不等式x-1<log5(x+3)的所有整数解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x,则称x为该函数的“不动点”.下列命题正确的序号是②.
①f(x)=x2的不动点至多有一个;
②若f(x)=$\frac{1}{x}$,g(x)=f(f(x)),则2014是函数g(x)的不动点;
③f(x)=ex存在唯一的不动点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\sqrt{2-x}$,求f(-2)-f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求实数m,使直线x-my+3=0和圆x2+y2-6x+5=0.
(1)相交;
(2)相切;
(3)相离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(x-1)2+y2=1,则$\frac{y}{x+1}$的最大值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2.
(1)若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{2}$,求证:$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(2)若($\overrightarrow{a}$+2$\overrightarrow{b}$)($\overrightarrow{a}$-$\overrightarrow{b}$)=-2,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知lg2=a,lg3=b,用a,b表示log1245.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设z=1+i,则$\frac{2}{z}+{z^2}$=(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

同步练习册答案