分析 由AC⊥BC,AB为直径,可设A(-2,0),B(2,0),C(m,n),且m2+n2=4,求得|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|,可得几何意义,即为圆上的点与(0,9)的距离,连接PO,延长交圆于D,计算即可得到所求最大值.
解答
解:由AC⊥BC,AB为直径,可设A(-2,0),B(2,0),
C(m,n),且m2+n2=4,
点P的坐标为(0,3),
即有|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|=|(-2,-3)+(2,-3)+(m,n-3)|
=|(m,n-9)|=$\sqrt{{m}^{2}+(n-9)^{2}}$表示圆上的点与(0,9)的距离,
连接PO,延长交圆于D,|PD|即为最大值,
且为9+2=11.
故答案为:11.
点评 本题考查向量的模的最大值,注意运用两点的距离,结合图形分析,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com