精英家教网 > 高中数学 > 题目详情
20.若log2(a+b)=log4(4-4a2b2),当a-b取得最大值时,求ab的值.

分析 先根据对数的运算性质,得到(a+b)2=4-4a2b2,继而求出当b=1时,a的值,再根据(a-b)2=(a+b)2-4ab,得到(a-b)2=4-4a2b2-4ab=-4(ab-$\frac{1}{2}$)2+5,
根据二次函数的性质即可求出答案.

解答 解:∵log2(a+b)=log4(4-4a2b2),
∴(a+b)2=4-4a2b2
当b=1时,
∴(a+1)2=4-4a2
∵4-4a2b2>0,且a+b>0,
∴-1<ab<1,且a+b>0,
∵(a-b)2=(a+b)2-4ab,
∴(a-b)2=4-4a2b2-4ab=-4(ab+$\frac{1}{2}$)2+5,
∴当ab=-$\frac{1}{2}$时,(a-b)2有最大值,
∴当a-b取得最大值时,ab=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题考查了对数的运算性质和二次函数的性质,函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|-1<x<1},B={x|x2≤2x},则∁R(A∩B)等于(  )
A.[0,+∞)B.[-1,1)C.(-∞,0)∪[1,+∞)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲决定在某日0时至24时内随机向某网站发布一则信息,该网站将这则信息保留4小时,乙在这一天0时至24时内随机到此网站的同一网页浏览2小时,则乙能看到甲发布信息的概率为$\frac{43}{144}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{{x}^{2}}{2x+1}$(x>0),f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则f2($\frac{1}{2}$)=$\frac{1}{40}$,f2(x)=$\frac{{x}^{4}}{2{x}^{2}+2x+1}$,fn(x)在[$\frac{1}{2}$,1]上的最大值是$\frac{1}{1+2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{x}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{y}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥$\overrightarrow{b}$,
(1)求|$\overrightarrow{x}$|,|$\overrightarrow{y}$|;
(2)若$\overrightarrow{x}$与$\overrightarrow{y}$的夹角为θ,求cosθ值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标系xoy中,已知点A,B,C是圆x2+y2=4上的动点,且满足AC⊥BC,若点P的坐标为(0,3),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最大值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x3+mx2+nx+1(m,n∈R)在区间[1,2]上单调递增,则3m+n的最小值为-$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知命题p:对任意x>1,x+$\frac{1}{x-1}$≥a,若¬p是真命题,则实数a的取值范围是a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)求-1≤x≤3时,f(x)的解析式;
(3)当-4≤x≤4时,求f(x)=m(m<0)的所有实根之和.

查看答案和解析>>

同步练习册答案