精英家教网 > 高中数学 > 题目详情
12.如图,若点E为正方形ABCD外一点,∠BEC=45°,连AE.
(1)求∠AEB的度数;
(2)求证:AE+CE=$\sqrt{2}$BE.

分析 (1)过点B作BF⊥BE交EC延长线于F,由∠BEC=45°得BF=BE,根据四边形ABCD是正方形得AB=BC、∠ABE=∠CBF,依据“SAS”证△ABE≌△CBF可得∠AEB=∠F=45°;
(2)由△ABE≌△CBF知CF=AE,在RT△BEF中,由勾股定理得EF=EC+CF=$\sqrt{2}$BE,即AE+CE=$\sqrt{2}$BE.

解答 (1)解:过点B作BF⊥BE交EC的延长线于F,

∵∠BEC=45°,
∴∠F=45°,
∴∠F=∠BEC,
∴BF=BE,
又∵四边形ABCD是正方形,
∴AB=BC,
∵∠ABC=90°,
∴∠ABE=∠CBF,
在△ABE和△CBF中,
∵$\left\{\begin{array}{l}{BE=BF}\\{∠ABE=∠CBF}\\{AB=CB}\end{array}\right.$,
∴△ABE≌△CBF(SAS),
∴∠AEB=∠F=45°;
(2)证明:∵△ABE≌△CBF,
∴CF=AE,
在Rt△BEF中,
∵BE2+BF2=EF2
∴$\sqrt{2}$BE=EF,
∴AE+CE=$\sqrt{2}$BE.

点评 本题主要考查全等三角形的判定与性质,通过构建全等三角形将待求角转换到求另一个相等角是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(理)试卷(解析版) 题型:解答题

已知c>0,设命题p:函数为减函数.命题q:当时,函数f(x)=x+恒成立.如果“p∨q”为真命题,“p∧q”为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且椭圆上的点到焦点距离的最大值为2+$\sqrt{3}$,最小值为2-$\sqrt{3}$.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为y=kx+$\sqrt{3}$(k>0),O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF,则图中全等的三角形有(  )对.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,D是三角形外一点,且BD=CD,求证:AD垂直平分BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x-a|(a∈R).
(1)当a=1时,解不等式f(x)<|2x-1|-1;
(2)当x∈(-2,1)时,|x-1|>|2x-a-1|-f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设圆的圆心坐标为C(-1,2),半径为5,弦AB的中点坐标为M(0,-1),求该弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,已知DE∥BC,EF:BF=2:3,则AD:AB=(  )
A.1:2B.1:3C.2:3D.2:5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,△ABC中,AC=1,AB=2,∠ACB=$\frac{π}{2}$,P为AB的中点,且△ABC与正方形BCDE所在平面互相垂直.
(1)求证:AD∥平面PCE;
(2)求二面角P-CE-B的余弦值.

查看答案和解析>>

同步练习册答案