精英家教网 > 高中数学 > 题目详情
6.如图所示,△ABC中,AC=1,AB=2,∠ACB=$\frac{π}{2}$,P为AB的中点,且△ABC与正方形BCDE所在平面互相垂直.
(1)求证:AD∥平面PCE;
(2)求二面角P-CE-B的余弦值.

分析 (Ⅰ)设BD∩CE=0,连结OP,则OP∥AD,由此能证明AD∥平面PCE;
(2)以C为原点,CA为x轴,CB为y轴,CD为z轴,建立空间直角坐标系,利用向量法能求出二面角P-CE-B的余弦值.

解答 解:(1)证明:设BD∩CE=0,连结OP,
∵正方形BCDE对角线互相平分,∴O是BD中点,
∵P为AB的中点,∴OP∥AD,
∵AD?平面PCE,OP?平面PCE,
∴AD∥平面PCE;
(2)∵△ABC中,AC=1,AB=2,∠ACB=$\frac{π}{2}$,
P为AB的中点,且△ABC与正方形BCDE所在平面互相垂直,
∴CD⊥平面ABC,
以C为原点,CA为x轴,CB为y轴,CD为z轴,
建立空间直角坐标系,
C(0,0,0),A(1,0,0),B(0,2,0),
P($\frac{1}{2},1,0$),E(0,2,2),
$\overrightarrow{CP}$=($\frac{1}{2},1,0$),$\overrightarrow{CE}$=(0,2,2),
设平面PCE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CP}=\frac{1}{2}x+y=0}\\{\overrightarrow{n}•\overrightarrow{CE}=2y+2z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-2,2),
平面BCE的法向量$\overrightarrow{m}$=(1,0,0),
设二面角P-CE-B的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{12}}$=$\frac{\sqrt{3}}{3}$.
∴二面角P-CE-B的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查线面平行的证明,考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,若点E为正方形ABCD外一点,∠BEC=45°,连AE.
(1)求∠AEB的度数;
(2)求证:AE+CE=$\sqrt{2}$BE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设S={x∈N|0≤x≤6},A={1,3,4},B={4,6},C={3,5},则A∩B{4},A∪B={1,3,4,6},(∁SA)∩(∁SB)={2,5},A∩B∩C=∅,A∪B∪C={1,3,4,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且右准线方程为x=4.
(1)求椭圆的标准方程;
(2)设P(x1,y1),M(x2,y2)(y2≠y1)是椭圆C上的两个动点,点M关于x轴的对称点为N,如果直线PM,PN与x轴交于(m,0)和(n,0),问m•n是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动圆过点M(2,0),且被y轴截得的线段长为4,记动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;
(2)问:x轴上是否存在一定点P,使得对于曲线C上的任意两点A和B,当$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)时,恒有△PAM与△PBM的面积之比等于$\frac{|PA|}{|PB|}$?若存在,则求P点的坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,曲线$C:\left\{\begin{array}{l}x=\sqrt{2}cosα+1\\ y=\sqrt{2}sinα+1\end{array}\right.$(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m
(1)若m=0,判断直线l与曲线C的位置关系;
(2)若曲线C上存在点P到直线l的距离为$\frac{{\sqrt{2}}}{2}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设圆O:x2+y2=1,直线l:x+2y-3=0,点A∈l,若圆O上存在点B,使得∠OAB=45°(O为坐标原点),则点A的横坐标的最大值为(  )
A.$\frac{1}{5}$B.1C.$\frac{9}{5}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线3x-4y+5=0和(x-1)2+(y+3)2=4的位置关系是相离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.试比较下列各组数的大小
(1)$\sqrt{12}$-$\sqrt{11}$和$\sqrt{11}$-$\sqrt{10}$
(2)$\frac{2}{\sqrt{6}+4}$和2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

同步练习册答案