精英家教网 > 高中数学 > 题目详情
1.已知动圆过点M(2,0),且被y轴截得的线段长为4,记动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;
(2)问:x轴上是否存在一定点P,使得对于曲线C上的任意两点A和B,当$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)时,恒有△PAM与△PBM的面积之比等于$\frac{|PA|}{|PB|}$?若存在,则求P点的坐标,否则说明理由.

分析 (1)设动圆圆心的坐标为C(x,y),由题意可得:22+|x|2=(x-2)2+y2,化简整理即可得出.
(2)设P(a,0),A(x1,y1),B(x2,y2).由$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R),可知:M,A,B三点共线,设直线AB的方程为:x=my+2,代入抛物线方程可得:y2-4my-8=0..由△PAM与△PBM的面积之比等于$\frac{|PA|}{|PB|}$,可得:PM平分∠APB,因此直线PA,PB的倾斜角互补,即kPA+kPB=0,利用斜率计算公式、根与系数的关系化简即可得出.

解答 解:(1)设动圆圆心的坐标为C(x,y),由题意可得:22+|x|2=(x-2)2+y2,化为:y2=4x.
∴动圆圆心的轨迹方程为:y2=4x.
(2)设P(a,0),A(x1,y1),B(x2,y2).由$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R),可知:M,A,B三点共线.
设直线AB的方程为:x=my+2,代入抛物线方程可得:y2-4my-8=0.
∴y1+y2=4m,y1•y2=-8.由△PAM与△PBM的面积之比等于$\frac{|PA|}{|PB|}$,可得:PM平分∠APB,
因此直线PA,PB的倾斜角互补,
∴kPA+kPB=0,∴$\frac{{y}_{1}}{{x}_{1}-a}$+$\frac{{y}_{2}}{{x}_{2}-a}$=0,
把x1=my1+2,x2=my2+2代入可得:$\frac{2m{y}_{1}{y}_{2}+(2-a)({y}_{1}+{y}_{2})}{(m{y}_{1}+2-a)(m{y}_{2}+2-a)}$=0,
∴-16m+(2-a)×4m=0,化为:m(a+2)=0,由于对于任意m都成立,∴a=-2.
故存在定点(-2,0),满足条件.

点评 本题考查了抛物线与圆的标准方程及其性质、直线与抛物线相交问题问题转化为一元二次方程的根与系数的关系、斜率计算公式、角平分线的性质、三角形面积计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,D是三角形外一点,且BD=CD,求证:AD垂直平分BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=arccosx+1.且f(a)=a.求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心在原点,焦点F1,F2在轴上,焦距为2,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P是椭圆C上第一象限内的点,△PF1F2的内切圆的圆心为I,半径为$\frac{1}{2}$.求:
(i)点P的坐标;
(ii)直线PI的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C上任意一点P(x,y)到点F(1,0)的距离比到直线x+2=0的距离小1.
(1)求曲线C的方程;
(2)过x轴上一点Q作直线l与曲线C交于A,B两点,问是否存在定点Q使$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$为定值,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,△ABC中,AC=1,AB=2,∠ACB=$\frac{π}{2}$,P为AB的中点,且△ABC与正方形BCDE所在平面互相垂直.
(1)求证:AD∥平面PCE;
(2)求二面角P-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{2^x}-a,x≥3\\ ln|x|,x<3\end{array}\right.$,若函数f (x)在R上有三个不同零点,则a的取值范围是(  )
A.[-3,+∞)B.(-∞,9)C.[3,+∞)D.[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C过点A(0,1),B(2,3)且圆心在直线x-2y=0上,则C上的点到直线x+y+5=0的距离的最小值为(  )
A.4$\sqrt{2}$B.4$\sqrt{2}$+2C.4$\sqrt{2}$-2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(1+$\sqrt{x}$)=x+1,则f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案