精英家教网 > 高中数学 > 题目详情
12.设m,n是两条不同的直线,α,β是两个不重合的平面,下列四个命题:
①$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}$⇒m⊥α;②$\left.{\begin{array}{l}{m⊥α}\\{m?β}\end{array}}\right\}$⇒α⊥β;③$\left.{\begin{array}{l}{m⊥α}\\{n⊥α}\end{array}}\right\}$⇒m∥n;④$\left.{\begin{array}{l}{\begin{array}{l}{m?α}\\{n?β}\end{array}}\\{α∥β}\end{array}}\right\}$⇒m∥n
其中正确命题的个数是(  )
A.3个B.2个C.1个D.0个

分析 利用线面垂直、面面垂直的判定定理和性质定理,对选项分别分析解答.

解答 解:对于①,直线m可能在平面α内;故①错误;
对于②,根据面面垂直 的判定定理可以判断结论成立;故②正确;
对于③,根据线面垂直的性质定理得到结论正确;故③正确;
对于④,由已知得到直线m,n可能平行或者异面;故④错误.
故选:B.

点评 本题考查了空间线线关系、线面关系以及面面关系的判定,熟练掌握相关的定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥0}\end{array}\right.$,则z=y-2x的最小值等于(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y+m≤0}\\{y≥0}\end{array}\right.$,且z=y-2x的最小值等于-2,则实数m的值等于(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若tan(α+45°)<0,则下列结论正确的是(  )
A.sinα<0B.cosα<0C.sin2α<0D.cos2α<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,是一个几何体的三视图,其中主视图、左视图是直角边长为2的等腰直角三角形,俯视图为边长为2的正方形,则此几何体的表面积为(  )
A.8+4$\sqrt{2}$B.8+4$\sqrt{3}$C.$6+6\sqrt{2}$D.8+2$\sqrt{2}$+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C的圆心在(0,1),半径为1.直线l过点(0,3)垂直于y轴.
(Ⅰ)求圆C和直线l的参数方程;
(Ⅱ)过原点O作射线分别交圆C和直线l于M,N,求证|OM|•|ON|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$,(n≥2,n∈N),则a11的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足an+1=$\frac{1}{{a}_{n}}$+1,n∈N*,a1=1,则a4=(  )
A.$\frac{3}{2}$B.3C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在曲线y=$\frac{4}{{x}^{2}}$上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为(2,1).

查看答案和解析>>

同步练习册答案