精英家教网 > 高中数学 > 题目详情
3.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y+m≤0}\\{y≥0}\end{array}\right.$,且z=y-2x的最小值等于-2,则实数m的值等于(  )
A.-1B.1C.-2D.2

分析 作出不等式组对应的平面区域,利用z=y-2x的最小值等于-2,结合数形结合即可得到结论.

解答 解:由z=y-2x,得y=2x+z,
作出不等式对应的可行域,
平移直线y=2x+z,
由平移可知当直线y=2x+z经过点A时,
直线y=2x+z的截距最小,此时z取得最小值为-2,即y-2x=-2,
由$\left\{\begin{array}{l}{y-2x=-2}\\{y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,
即A(1,0),
点A也在直线x+y+m=0上,
则m=-1,
故选:A

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示,程序框图的输出结果是s=$\frac{11}{12}$,那么判断框中应填入的关于n的判断条件是(  )
A.n≤8?B.n<8?C.n≤10?D.n<10?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.六个人排成一排照相,其中甲不站在两端的排法种数为480.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数F(x)=lnx,f(x)=$\frac{1}{2}$x2+a,a为常数,直线l与函数F(x)和f(x)的图象都相切,且l与函数F(x)的图象的切点的横坐标等于1.
(Ⅰ)求直线l的方程和a的值;
(Ⅱ)求证:关于x的不等式F(1+x2)≤ln2+f(x)的解集为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx(ω>0)的周期为$\frac{π}{2}$.
(Ⅰ)求ω的值和函数f(x)的单调递增区间;
(Ⅱ)设△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=lg(-x)的定义域为A,函数y=ex的值域为B,则A∩B=(  )
A.(0,+∞)B.(0,e)C.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线C:y=$\frac{lnx}{x}$在点(1,0)处的切线l在y轴的截距为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设m,n是两条不同的直线,α,β是两个不重合的平面,下列四个命题:
①$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}$⇒m⊥α;②$\left.{\begin{array}{l}{m⊥α}\\{m?β}\end{array}}\right\}$⇒α⊥β;③$\left.{\begin{array}{l}{m⊥α}\\{n⊥α}\end{array}}\right\}$⇒m∥n;④$\left.{\begin{array}{l}{\begin{array}{l}{m?α}\\{n?β}\end{array}}\\{α∥β}\end{array}}\right\}$⇒m∥n
其中正确命题的个数是(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象过点(0,1)
(1)求函数f1(x)的解析式;
(2)将函数y=f1(x)的图象向右平移$\frac{π}{4}$个单位长度,得到函数y=f2(x),求y=f2(x)的表达式及其递增区间.

查看答案和解析>>

同步练习册答案