分析 (1)由图求出A,ω,φ的值,可得函数f(x)的解析式;
(2)根据${x_0}∈(0,\frac{π}{2})$,$f({x_0})=\sqrt{3}$,求出x0,代入g(x)=1+2cos2x,可求g(x0)的值;
(3)(3)$2sin({2x+\frac{π}{6}})-1-2cos2x-a=0在[{0,\frac{π}{2}}]上有解$,$等价于函数y=a和y=2sin({2x+\frac{π}{6}})-1-2cos2x的图象有交点$,进而得到答案.
解答 解:(1)由图知A=2,(解法只要合理,均可给分)(1分)
$\frac{T}{4}=\frac{5}{12}π-\frac{π}{6}=\frac{π}{4},T=π=\frac{2π}{ω},ω=2$,(2分)
∴f(x)=2sin(2x+φ),
∴$f({\frac{π}{6}})=2$,
∴$2=2sin({2×\frac{π}{6}+φ})$,$φ=\frac{π}{6}$,(3分)
∴$f(x)=2sin({2x+\frac{π}{6}})$; (4分)
(2)$f({x_0})=2sin({2{x_0}+\frac{π}{6}})=\sqrt{3},{x_0}=\frac{π}{12}或\frac{π}{4}$,(6分)
$g({x_0})=g({\frac{π}{12}})=1+2cos\frac{π}{6}=1+\sqrt{3}或1+\sqrt{2}$; (8分)
(3)$2sin({2x+\frac{π}{6}})-1-2cos2x-a=0在[{0,\frac{π}{2}}]上有解$,
$等价于函数y=a和y=2sin({2x+\frac{π}{6}})-1-2cos2x的图象有交点$,(9分)
$y=2sin({2x+\frac{π}{6}})-1-2cos2x=2({sin2xcos\frac{π}{6}+cos2xsin\frac{π}{6}})-1-2cos2x$=$\sqrt{3}sin2x-cos2x-1=2sin({2x-\frac{π}{6}})-1$,(10分)
∵$x∈[{0,\frac{π}{2}}],2x-\frac{π}{6}∈[{-\frac{π}{6,}\frac{5π}{6}}],sin(2x-\frac{π}{6})∈[{-\frac{1}{2},1}],y∈[{-2,1}]$,(11分)
∴a∈[-2,1].(12分)
点评 本题考查的知识点是正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$) | B. | f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$) | C. | f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1) | D. | f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | (1,2] | C. | [1,2] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100 | B. | 1024 | C. | 1022 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com