分析 (1)将曲线C的两式平方相加可得,曲线C的普通方程,注意范围;由x=ρcosθ,y=ρsinθ,可得直线l的普通方程;
(2)求得直线和圆相切的a值,以及直线过点(-1,0),(1,0),可得a值,结合直线和曲线有交点,即可得到a的范围.
解答 解:(1)将曲线C的两式平方相加可得,
曲线C的普通方程为:x2+y2=1(xy>0或y=0),
由x=ρcosθ,y=ρsinθ,可得
直线l的普通方程为:x+y=a.
(2)当直线和圆相切时,
d=$\frac{|a|}{\sqrt{2}}$=1,解得a=±$\sqrt{2}$,
当直线经过点(1,0)时,a=1,
当直线经过点(-1,0)时,a=-1,
由直线l与曲线C有公共点,
则a∈[-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$].
点评 本题考查参数方程、极坐标方程和普通方程的互化,同时考查直线和圆的位置关系,考查观察和运算能力,属于中档题和易错题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3x2+xcosx)′=6x+cosx-xsinx | B. | (lnx-$\frac{1}{{x}^{2}}$)′=$\frac{1}{x}$-$\frac{2}{{x}^{3}}$ | ||
| C. | (sin2x)′=2cos2x | D. | ($\frac{sinx}{x}$)′=$\frac{xcosx-sinx}{{x}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 偏爱蔬菜 | 偏爱肉类 | 合计 | |
| 50岁以下 | 4 | 8 | 12 |
| 50岁以上 | 16 | 2 | 18 |
| 合计 | 20 | 10 | 30 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{4}$个单位长度 | B. | 向右平移$\frac{π}{4}$个单位长度 | ||
| C. | 向左平移$\frac{π}{2}$个单位长度 | D. | 向右平移$\frac{π}{2}$个单位长度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com