精英家教网 > 高中数学 > 题目详情
7.为了得到函数y=sin2x+cos2x的图象,只需把函数y=sin2x-cos2x的图象(  )
A.向左平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{4}$个单位长度
C.向左平移$\frac{π}{2}$个单位长度D.向右平移$\frac{π}{2}$个单位长度

分析 利用两角和与差的正弦函数化简两个函数的表达式为同名函数,然后利用左加右减的原则确定平移的方向与单位.

解答 解:分别把两个函数解析式简化为y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$).
函数y=sin2x-cos2x═$\sqrt{2}$sin(2x-$\frac{π}{4}$),
又y=$\sqrt{2}$sin[2(x+$\frac{π}{4}$)-$\frac{π}{4}$]=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
可知只需把函数y=sin2x-cos2x的图象向左平移$\frac{π}{4}$个长度单位,得到函数y=sin2x+cos2x的图象.
故选:A.

点评 本题是中档题,考查两角和与差的正弦函数的化简,三角函数的图象的变换,注意化简同名函数与x的系数为“1”是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.$\int_1^2{(\frac{1}{x}}-{2^x})dx$=$ln2-\frac{2}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}是首项为a1,公差为d的等差数列,Sn是其前n项的和,且S5=5,S6=-3.
(Ⅰ)求数列{an}的通项an及Sn
(Ⅱ)设{bn-2an}是首项为1,公比为3的等比数列.求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-2)ex
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,2]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.曲线C:$\left\{\begin{array}{l}{x=\frac{1}{t}}\\{y=\frac{1}{t}\sqrt{{t}^{2}-1}}\end{array}\right.$,直线l:ρcosθ+ρsinθ=a
(1)写出曲线C和直线l的普通方程;
(2)直线l与曲线C有公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题“?x∈R,|x+1|+|x-2|≥3”的否定是?x∈R,|x+1|+|x-2|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(α)=$\frac{sin(π+α)cos(2π-α)tan(-α)}{tan(-π-α)sin(-π-α)}$,化简f(α)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知$\frac{1}{1-i}+\frac{1}{2+3i}=x+yi$,求实数x,y的值;
(2)已知z1,z2∈C,若z1=3+4i,|z2|=5,z1•z2是纯虚数,求z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,四棱锥P-ABCD的底面是边长为2的正方形,已知PA⊥平面AC,且PA=2,则点B到平面PCD的距离为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案