精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=(x-2)ex
(1)求f(x)的单调区间;
(2)求f(x)在区间[0,2]上的最小值和最大值.

分析 (1)求出函数的导数,令导数大于0,得增区间,令导数小于0,得减区间;
(2)由(1)可得f(x)在[0,1]递减,在(1,2]递增,即有f(x)在x=1处取得极小值,且为最小值,求得端点的函数值,比较即可得到最大值.

解答 解:(1)函数f(x)的导数为f′(x)=(x-1)ex
由f′(x)>0,可得x>1;由f′(x)<0,可得x<1.
则f(x)的增区间为(1,+∞),减区间为(-∞,1);
(2)由(1)可得f(x)在[0,1]递减,在(1,2]递增,
即有f(x)在x=1处取得极小值,且为最小值,且为f(1)=-e,
由f(0)=-2,f(2)=0,
可得f(x)的最大值为f(2)=0.
则f(x)的最小值为-e,最大值为0.

点评 本题考查导数的运用:求单调区间和极值、最值,考查运算能力,正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列结论:①函数y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2是同一函数;②函数f(x-1)的定义域为[1,2],则函数f(3x2)的定义域为[0,$\frac{\sqrt{3}}{3}$];③函数y=log2(x2+2x-3)的递增区间为(-1,+∞):期中正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若{an}为等差数列,其前n项和为Sn,若S4=3,S8=9,则a17+a18+a19+a20=15..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x、y的取值如表所示:
x0134
y2.24.34.86.7
从散点图分析,y与x线性相关,且$\hat y$=0.95x+a,则a=2.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列式子不正确的是(  )
A.(3x2+xcosx)′=6x+cosx-xsinxB.(lnx-$\frac{1}{{x}^{2}}$)′=$\frac{1}{x}$-$\frac{2}{{x}^{3}}$
C.(sin2x)′=2cos2xD.($\frac{sinx}{x}$)′=$\frac{xcosx-sinx}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直线l过点P(1,1),向量n=(2,3)与直线l平行,直线l与曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)交于A、B两点.
(1)求直线l的参数方程与曲线C普通方程
(2)求||PA|-|PB||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了得到函数y=sin2x+cos2x的图象,只需把函数y=sin2x-cos2x的图象(  )
A.向左平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{4}$个单位长度
C.向左平移$\frac{π}{2}$个单位长度D.向右平移$\frac{π}{2}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2-2x-4y=0关于直线x-y=0对称的圆的方程为(  )
A.(x-2)2+(y-1)2=3B.(x+2)2+(y+1)2=5C.(x+2)2+(y+1)2=3D.(x-2)2+(y-1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察下列各式:则72=49,73=343,74=2401,…则72015的末两位数字为(  )
A.01B.43C.07D.49

查看答案和解析>>

同步练习册答案