精英家教网 > 高中数学 > 题目详情

【题目】学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:

分组

频数

频率

[60,75)

2

0.04

[75,90)

3

0.06

[90,105)

14

0.28

[105,120)

15

0.30

[120,135)

A

B

[135,150]

4

0.08

合计

C

D

【答案】
(1)解:由样本频率分布表,得:

C=50,A=50﹣2﹣3﹣14﹣15﹣4=12,B= =0.24,D=1


(2)解:估计成绩在120分以上(含120分)的学生比例为:0.24+0.08=0.32
(3)成绩在[60,75)内有2人,记为甲、A,

成绩在[135,150]内有4人,记为乙,B,C,D,

则“二帮一”小组有以下12种分组办法:

甲乙B,甲乙C,甲乙D,甲BC,甲BD,甲CD,A乙B,A乙C,A乙D,ABC,ABD,ACD,

其中甲、乙两同学被分在同一小组有3种办法:甲乙B,甲乙C,甲乙D,

∴甲、乙同学恰好被安排在同一小组的概率为:p=


【解析】(1)由样本频率分布表,能求出A,B,C,D的值.(2)由频率分布表能估计成绩在120分以上(含120分)的学生比例.(3)成绩在[60,75)内有2人,记为甲、A,成绩在[135,150]内有4人,记为乙,B,C,D,由此利用列举法能求出甲、乙同学恰好被安排在同一小组的概率.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆)与直线 ),四点 中有三个点在椭圆上,剩余一个点在直线上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若动点在直线上,过作直线交椭圆 两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组,第一组[155,160),第二组[160,165),…,第八组[190.195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组人数为4.

(1)求第七组的频数.
(2)估计该校的800名男生身高的中位数在上述八组中的哪一组以及身高在180cm以上(含180cm)的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠ACB为钝角,AC=BC=1, 且x+y=1,函数 的最小值为 ,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知( +3x2n的展开式中,各项系数和比它的二项式系数和大992,求:
(1)展开式中二项式系数最大的项;
(2)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,一条宽为1km的两平行河岸有村庄A和供电站C,村庄BAC的直线距离都是2kmBC与河岸垂直,垂足为D.现要修建电缆,从供电站C向村庄AB供电.修建地下电缆、水下电缆的费用分别是2万元/km、4万元/km

(1)已知村庄AB原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km.现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值;

(2)如图②,点E在线段AD上,且铺设电缆的线路为CEEAEB.若∠DCEθ(0≤θ),试用θ表示出总施工费用y (万元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学8次数学测验成绩如茎叶图所示, 1 2分别表示甲、乙两名同学8次数学测验成绩的平均数,s1 , s2分别表示甲、乙两名同学8次数学测验成绩的标准差,则有( )

A.1 2 , s1<s2
B.1= 2 , s1<s2
C.1= 2 , s1=s2
D.1 2 , s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x>0,x+ >a;命题q:x0∈R,x02﹣2ax0+1≤0.若¬q为假命题,p∧q为假命题,则求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<β<α< ,tanα=4 ,cos(α﹣β)=
(1)求sin2α的值;
(2)求β的大小.

查看答案和解析>>

同步练习册答案