精英家教网 > 高中数学 > 题目详情
18.已知f(x)=m(x-2m)(x+m+3),g(x)=3x-1-3,若?x∈R,f(x)<0或g(x)<0,则m的取值范围是(-5,0).

分析 根据题意,求出g(x)<0时x的取值范围,得出f(x)<0恒成立时x的取值范围,由此求出m的取值范围.

解答 解:当g(x)=3x-1-3<0时,3x-1<3,
∴x<2,
要使?x∈R,f(x)<0或g(x)<0,
只有在x≥2时恒有f(x)<0,
根据f(x)的解析式,得;
f(x)的图象开口向下,且两个零点均小于2,
即$\left\{\begin{array}{l}{m<0}\\{2m<2}\\{-m-3<2}\end{array}\right.$,
解得-5<m<0,
∴m的取值范围是(-5,0).

点评 本题考查了不等式的解法与应用问题,也考查了函数的性质与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某盒里有20个球,其半径大小的频率分布直方图如图所示.
(Ⅰ)下表是这些球的半径的频数分布表,求正整数a,b的值;
区间[75,80)[80,85)[85,90)[90,95)[95,100]
人数1a76b
(Ⅱ)半径在[90,95)和[95,100)里的球分别用1,2,3,…标记,现从这两个区间里的球中各摸出一球.
①若用x表示从区间[90,95)中摸出的球的号码,y表示从区间[95,100)中摸出的球的号码,请写出数对(x,y)的所有情形;
②求这两球的号码之和大于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数$\frac{a+i}{b-3i}$(a,b∈R)对应的点在虚轴上,则ab的值是(  )
A.-15B.3C.-3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=log7(x2-2x-3)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正三棱锥P-ABC,M和N分别为AB、PA的中点,MN⊥CN,若PA=1,则此正三棱锥的外接球表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于函数f(x)和g(x),设m∈{x∈R|f(x)=0},n∈{x∈R|g(x)=0},若存在m、n,使得|m-n|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=log2(x+1)-e1-x与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )
A.[2,$\frac{7}{3}$]B.[$\frac{7}{3}$,3]C.[2,3]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知AB是⊙O的弦,P是AB上一点,AB=6$\sqrt{2},PA=4\sqrt{2}$,OP=3,求⊙O的半径R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各式:
(1)3(2$\overrightarrow{a}$-$\overrightarrow{b}$)-2(4$\overrightarrow{a}$-3$\overrightarrow{b}$);
(2)$\frac{1}{3}$(4$\overrightarrow{a}$+3$\overrightarrow{b}$)-$\frac{1}{2}$(3$\overrightarrow{a}$-$\overrightarrow{b}$)-$\frac{3}{2}$$\overrightarrow{b}$;
(3)2(3$\overrightarrow{a}$-4$\overrightarrow{b}$+$\overrightarrow{c}$)-3(2$\overrightarrow{a}$+$\overrightarrow{b}$-3$\overrightarrow{c}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若m是2和8的等比中项,则圆锥曲线x2+$\frac{y^2}{m}$=1的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\sqrt{5}$C.$\frac{{\sqrt{3}}}{2}$或 $\sqrt{5}$D.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步练习册答案