分析 (I)由B-A=$\frac{π}{2}$,可得B为钝角,cosB=-$\sqrt{1-si{n}^{2}B}$,sinA=$sin(B-\frac{π}{2})$=-cosB.再利用正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,即可得出;
(II)由$sinA=\frac{\sqrt{3}}{3}$,且A为锐角,可得cosA=$\frac{\sqrt{6}}{3}$.利用sinC=sin(A+B)=sinAcosB+cosAsinB即可得出.
解答 解:(I)∵B-A=$\frac{π}{2}$,∴B为钝角,
∴cosB=-$\sqrt{1-si{n}^{2}B}$=-$\frac{\sqrt{3}}{3}$,
∴sinA=$sin(B-\frac{π}{2})$=-cosB=$\frac{\sqrt{3}}{3}$.
由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,
∴$a=\frac{bsinA}{sinB}$=$\frac{3\sqrt{2}×\frac{\sqrt{3}}{3}}{\frac{\sqrt{6}}{3}}$=3.
(II)∵$sinA=\frac{\sqrt{3}}{3}$,且A为锐角,
∴cosA=$\frac{\sqrt{6}}{3}$.
∴sinC=sin(A+B)=sinAcosB+cosAsinB
=-$\frac{\sqrt{3}}{3}×\frac{\sqrt{3}}{3}+\frac{\sqrt{6}}{3}×\frac{\sqrt{6}}{3}$
=$\frac{1}{3}$.
∴cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{2\sqrt{2}}{3}$.
点评 本题考查了正弦定理、同角三角函数基本关系式、两角和差的正弦公式、三角形内角和定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com