ÒÑÖªµ¼º¯Êýf¡ä£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬ÇÒf£¨0£©=-
3
4
£¬Ôòy=f£¨x£©µÄͼÏó¿ÉÓɺ¯Êýg£¨x£©=
1
2
cosxµÄͼÏó£¨×Ý×ø±ê²»±ä£©£¨¡¡¡¡£©
A¡¢ÏȰѸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶£¬ÔÙÏòÓÒÆ½ÒÆ
5¦Ð
12
¸öµ¥Î»
B¡¢ÏȰѸ÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬ÔÙÏòÓÒÆ½ÒÆ
5¦Ð
6
¸öµ¥Î»
C¡¢ÏȰѸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶£¬ÔÙÏò×óÆ½ÒÆ
5¦Ð
12
¸öµ¥Î»
D¡¢ÏȰѸ÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬ÔÙÏò×óÆ½ÒÆ
5¦Ð
6
¸öµ¥Î»
¿¼µã£ºº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»
רÌ⣺Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£ºÓɺ¯ÊýµÄ×îÖµÇó³öA£¬ÓÉÖÜÆÚÇó³ö¦Ø£¬ÓÉÎåµã·¨×÷ͼÇó³ö¦ÕµÄÖµ£¬¿ÉµÃf¡ä£¨x£©=Asin£¨¦Øx+¦Õ£©µÄ½âÎöʽ£®
ÔÙ¸ù¾ÝÊýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬µÃ³ö½áÂÛ£®
½â´ð£º ½â£ºÓÉf¡ä£¨x£©=Asin£¨¦Øx+¦Õ£©µÄͼÏó¿ÉµÃA=1£¬
1
4
T=
1
4
2¦Ð
¦Ø
=
7¦Ð
12
-
¦Ð
3
£¬ÇóµÃ¦Ø=2£®
ÔÙÓÉÎåµã·¨×÷ͼ¿ÉµÃ2¡Á
¦Ð
3
+¦Õ=
¦Ð
2
£¬¡à¦Õ=-
¦Ð
6
£¬
¡àf¡ä£¨x£©=sin£¨2x-
¦Ð
6
£©£¬¡àf£¨x£©=-
1
2
cos£¨2x-
¦Ð
6
£©+k£®
ÔÙ¸ù¾Ýf£¨0£©=-
1
2
cos£¨-
¦Ð
6
£©+k=-
3
4
£¬¡àk=0£¬
¡àf£¨x£©=-
1
2
cos£¨2x-
¦Ð
6
£©=
1
2
cos£¨2x-
¦Ð
6
+¦Ð£©=
1
2
cos2£¨x+
5¦Ð
12
£©£®
¹Ê°Ñº¯Êýg£¨x£©=
1
2
cosxµÄͼÏóÏȰѸ÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶¿ÉµÃº¯Êýy=
1
2
cos2xµÄͼÏó£¬
ÔÙÏò×óÆ½ÒÆ
5¦Ð
12
¸öµ¥Î»£¬¼´¿ÉµÃµ½y=f£¨x£©µÄͼÏó£¬
¹ÊÑ¡£ºC£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÓɺ¯Êýy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÇó½âÎöʽ£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=loga£¨ax2-x+
1
2
£©£¨a£¾0ÇÒa¡Ù1£©ÔÚ[1£¬2]ÉϺãÕý£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªËÄÀâ×¶S-ABCDµÄ²àÀⳤÓëµ×Ãæ±ß³¤¶¼ÊÇ2£¬ÇÒSO¡ÍÆ½ÃæABCD£¬OΪµ×ÃæµÄÖÐÐÄ£¬Ôò²àÀâÓëµ×ÃæËù³ÉµÄ½ÇΪ£¨¡¡¡¡£©
A¡¢75¡ãB¡¢60¡ã
C¡¢45¡ãD¡¢30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶Ôa¡¢b¡ÊR£¬¼Çmax{a£¬ b}=
a£¬ a¡Ýb
b£¬ a£¼b
£¬Éèf1£¨x£©=|x-1|£¬f2(x)=-x2+6x-5£¬º¯Êýg£¨x£©=max{f1£¨x£©£¬f2£¨x£©}£¬Èô·½³Ìg£¨x£©=aÓÐËĸö²»Í¬µÄʵÊý½â£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢[1£¬+¡Þ£©
B¡¢[
2
3
£¬+¡Þ)
C¡¢[
2
3
£¬ 1]
D¡¢£¨3£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx£®Èôy=f£¨x£©µÄµ¼Êýf¡ä£¨x£©¶Ôx¡Ê[-1£¬1]¶¼ÓÐf¡ä£¨x£©¡Ü2£¬Ôò
b
a-1
µÄ·¶Î§£¨¡¡¡¡£©
A¡¢£¨-2£¬1]
B¡¢£¨-¡Þ£¬-2£©¡È[1£¬+¡Þ£©
C¡¢£¨
1
2
£¬1]
D¡¢[-2£¬
1
2
]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Ê×ÏîΪ1£¬ÇÒÂú×ãan+1=
n+1
n
an£¬ÄÇôanµÈÓÚ£¨¡¡¡¡£©
A¡¢n
B¡¢n+1
C¡¢
n+1
n
D¡¢
n
n+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªz=£¨1+i£©£¨1-mi£©ÊÇ´¿ÐéÊý£¨iÊÇÐéÊýµ¥Î»£©£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A¡¢¡À1B¡¢1C¡¢2D¡¢-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚ£¨0£¬¦Ð£©Éϵĺ¯Êýf£¨x£©Âú×ãf¡ä£¨x£©•sinx£¼f£¨x£©•cosx£¬ÔòÏÂÁв»µÈʽÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢f£¨
¦Ð
3
£©£¼
3
•f£¨
¦Ð
6
£©
B¡¢
1
2
•f£¨
1
2
£©£¼sin
1
2
•f£¨
¦Ð
6
£©
C¡¢sin2•f£¨1£©£¼sin1•f£¨2£©
D¡¢sin1•f£¨
1
2
£©£¼sin
1
2
•f£¨1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨ÆäÖЦأ¾0£¬|¦Õ|£¼
¦Ð
2
£©ÔÚÇø¼ä[-
¦Ð
6
£¬
¦Ð
3
]ÉϵÄͼÏóÈçͼËùʾ£®
£¨1£©Ç󦨣¬¦ÕµÄÖµ£»
£¨2£©Éèx¡Ê[0£¬
5¦Ð
12
]£¬²»µÈʽ|4f£¨x£©-1|£¼mºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸