精英家教网 > 高中数学 > 题目详情
已知双曲线C:x2-
y2
2
=1
,过点P(-1,-2)的直线交C于A,B两点,且点P为线段AB的中点.
(1)求直线AB的方程;
(2)求弦长|AB|的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)可先设A(x1,y1),B(x2,y2),再分别代入双曲线方程,作差即可求出直线斜率,进而可求直线方程.
(2)把(1)中所求直线方程代入双曲线方程,利用根与系数关系,求x1,x2,再利用弦长公式求线段AB的长.
解答: 解(1)设A(x1,y1),B(x2,y2),则x1+x2=-2,y1+y2=-4,
x12-
y12
2
=1
x22-
y22
2
=1
作差得(x1+x2)(x1-x2)-
1
2
(y1+y2)(y1-y2)=0,
∴kAB=
y1-y2
x1-x2
=1,
∴直线AB方程为y=x-1.
(2)把y=x-1代入x2-
y2
2
=1
,消去y得x2+2x-3=0
∴x1=1,x2=-3,从而得|AB|=
1+1
•|x1-x2|=4
2
点评:本题考查点差法求中点弦方程以及弦长公式求弦长,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在区间[1,5]和[2,4]分别取一个数,记为a,b,则方程
x2
a2
+
y2
b2
=1
表示焦点在x轴上且离心率小于
3
2
的椭圆的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD,AB=2,AC、BD交点为O,在ABCD内随机取一点E,则点E满足OE<1的概率为(  )
A、
π
4
B、
1
4
C、
π
8
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形OABC,其对角线为OB,AC,M,N分别是边OA,BC的中点,点G在线段MN上,若MG=λGN,且
OG
=
1
6
OA
+
1
3
OB
+
1
3
OC
,则λ等于(  )
A、2
B、1
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不同的直线l,m,不同的平面α,β,下命题中:
①若α∥β,l?α,则l∥β   
②若α∥β,l⊥α,则l⊥β
③若l∥α,m?α,则l∥m   
④若α⊥β,α∩β=l,m⊥l
则真命题的个数有(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax+1(a∈R).
(Ⅰ)若a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=2x-1,若存在x1∈(0,+∞),对于任意x2∈[0,1],使f(x1)≥g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校共有400名高一学生,期中考试之后,为了解学生学习情况,用分层抽样方法从中抽出c名学生的数学期中成绩,按成绩分组,制成如下的频率分布表:(低于20分0人)
组号 第一组 第二组 第三组 第四组 第五组 第六组 第七组 第八组
合计
分组 [20,30) [30,40) [40,50) [50,60) [60,70) [70,80) [80,90) [90,100)
频数 2 2 4 6 15 a 14 3 c
频率 0.04 0.04 0.08 b 0.3 0.08 0.28 0.06 1
(Ⅰ)求a,b,c的值,并估计该校本次考试的数学平均分;
(Ⅱ)教导处为了解数学成绩在60分以下的学生在学习数学时存在的问题,现决定从前四组中,利用分层抽样抽取7人,再从这7人中随机抽取两人谈话,求这两人都来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(1,-1)与点N(-1,1),动点P满足:直线MP与NP的斜率之积等于-
1
3
.设直线MP与NP分别与直线x=3相交于A,B两点,若点P使得△PMN与△PAB的面积相等,则点P的横坐标是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P到两定点A(1,0),B(2,0)的距离的比为
2
2

(1)求P的轨迹C的方程;
(2)是否存在过点A(1,0)的直线l交轨迹C于点M和N使得△MON的面积为
3
2
(O为坐标原点),若存在,求l的方程,若不存在说明理由.

查看答案和解析>>

同步练习册答案