精英家教网 > 高中数学 > 题目详情
7.设有下面四个命题
p1:若复数z满足$\frac{1}{z}$∈R,则z∈R;
p2:若复数z满足z2∈R,则z∈R;
p3:若复数z1,z2满足z1z2∈R,则z1=$\overline{z_2}$;
p4:若复数z∈R,则$\overline{z}$∈R.
其中的真命题为(  )
A.p2,p3B.p2,p4C.p1,p3D.p1,p4

分析 直接由复数的基本概念逐一判断即可.

解答 解:p1:若复数z满足$\frac{1}{z}$∈R,则z∈R,故命题p1为真命题;
p2:若复数z=i满足z2=-1∈R,则z∉R,故命题p2为假命题;
p3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠$\overline{z_2}$,故命题p3为假命题;
p4:若复数z∈R,则$\overline{z}$∈R,故命题p4为真命题.
∴其中的真命题为::p1,p4
故选:D.

点评 本题考查复数的基本概念的应用,命题的真假的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,a=1,b=$\sqrt{2}$,B=45°,则锐角A等于(  )
A.30°B.45°C.60°或 30°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数据x1,x2,…,x8平均数为6,标准差为2,则数据2x1-6,2x2-6,…,2x8-6的方差为(  )
A.16B.4C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow m=({2cosx+2\sqrt{3}sinx,1}),\overrightarrow n=({cosx,-y})$,且$\overrightarrow m⊥\overrightarrow n$.将y表示为x的函数,若记此函数为f(x),
(1)求f(x)的单调递增区间;
(2)将f(x)的图象向右平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标变为原来的2倍(纵坐标不变),得到函数g(x)的图象,求函数g(x)在x∈[0,π]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题中正确的是①②.(写出所有正确命题的序号)
①命题“?x0∈R,x${\;}_{0}^{2}$-1<0”的否定是“?x∈R,x2-1≥0”;
②命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”;
③若a,b∈R,则“log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“3a<3b”的必要不充分条件;
④“cosx=cosy”是“x=y+2kπ,k∈Z”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,$\overrightarrow{AB}$=(cos$\frac{3x}{2}$,-sin$\frac{3x}{2}$),$\overrightarrow{AC}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),其中x∈[$\frac{π}{6}$,$\frac{π}{3}$].
(I)若x=$\frac{π}{6}$,求|$\overrightarrow{BC}$|;
(II)记△ABC的边BC上的高为h,若函数f(x)=|$\overrightarrow{BC}$|2+λ•h的最大值是5,求常数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(1,2sinx),$\overrightarrow{b}$=(1,cosx-sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)求函数f(x)最小正周期;
(2)求函数f(x)的单调递增区间;
(3)当x∈[0,$\frac{π}{2}$]时,若方程|f(x)|=m有两个不等的实数根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,某市园林局准备绿化一块直径为BC的半圆形空地,△ABC以外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花.若BC=a(a为定值),∠ABC=α,设△ABC的面积为S1,正方形PQRS的面积为S2
(1)用a,α表示S1,S2
(2)当α为何值时,$\frac{{s}_{2}}{{s}_{1}}$取得最大值,并求出此最大值.

查看答案和解析>>

同步练习册答案