精英家教网 > 高中数学 > 题目详情
12.在△ABC中,设内角A、B、C的对边分别为a、b、c,$sin(\frac{π}{3}-C)+cos(C-\frac{π}{6})=\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{3}$且sinA=2sinB,求△ABC的面积.

分析 (Ⅰ)利用两角差的正弦函数,余弦函数公式化简已知可得$cosC=\frac{1}{2}$,结合范围0<C<π,即可解得C的值.
(Ⅱ)由正弦函数化简sinA=2sinB,可得a=2b,利用余弦定理解得b,可求a的值,利用三角形面积公式即可得解.

解答 (本题满分13分)
解:(Ⅰ)因为$sin(\frac{π}{3}-C)+cos(C-\frac{π}{6})=\frac{{\sqrt{3}}}{2}$,所以$cosC=\frac{1}{2}$,(3分)
因为在△ABC中,0<C<π,所以$C=\frac{π}{3}$. (5分)
(Ⅱ)因为sinA=2sinB,所以a=2b,(6分)
因为c2=a2+b2-2abcosC,
所以${(2\sqrt{3})^2}=4{b^2}+{b^2}-2×2{b^2}×\frac{1}{2}=3{b^2}$,(8分)
所以b=2,所以a=4.(11分)
所以${S_{△ABC}}=\frac{1}{2}absinC=2\sqrt{3}$.(13分)

点评 本题主要考查了两角差的正弦函数,余弦函数公式,正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知在边长为1的正方形ABCD中,E、F分别在线段AB,BC上运动,若EF=1,则$\overrightarrow{EC}$$•\overrightarrow{FD}$的取值范围是(  )
A.[1-$\sqrt{2}$,0]B.[0,$\sqrt{2}$+1]C.[$\sqrt{2}$-1,$\sqrt{2}$+1]D.[1,$\sqrt{2}$+1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦点分别为F1、F2,过F1且垂直于x轴的直线与双曲线左支交于A、B两点,若△ABF2为正三角形,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的解析式为(  )
A.g(x)=2sin(2x+$\frac{2π}{3}$)B.g(x)=2sin(2x-$\frac{π}{6}$)C.g(x)=2sin2xD.g(x)=2cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若(ax2+x+y)5的展开式的各项系数和为243,则x5y2的系数为(  )
A.10B.20C.30D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,一旦某年发放的燃油型汽车牌照数为0万张,以后每一年发放的燃油型的牌照的数量维持在这一年的水平不变.同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{an},每年发放的电动型汽车牌照数为构成数列{bn},写出这两个数列的通项公式;
(2)从2013年算起,求到2029年(包含2029年)累计各年发放的牌照数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.动点P到两定点F1(0,-4),F2(0,4)的距离之和为10,则动点P的轨迹方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{9}+\frac{y^2}{25}=1$C.$\frac{x^2}{16}+\frac{y^2}{25}=1$D.$\frac{x^2}{100}+\frac{y^2}{36}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)为奇函数,且在(-∞,0)上递减,f(-2)=0,则xf(x)<0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将一个棱长为a的正方体嵌入到四个半径为1且两两相切的实心小球所形成的球间空隙内,使得正方体能够任意自由地转动,则a的最大值为(  )
A.$\frac{{2\sqrt{2}-\sqrt{6}}}{6}$B.$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$C.$\frac{{2\sqrt{3}-2\sqrt{2}}}{3}$D.$\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案