精英家教网 > 高中数学 > 题目详情
17.某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,一旦某年发放的燃油型汽车牌照数为0万张,以后每一年发放的燃油型的牌照的数量维持在这一年的水平不变.同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{an},每年发放的电动型汽车牌照数为构成数列{bn},写出这两个数列的通项公式;
(2)从2013年算起,求到2029年(包含2029年)累计各年发放的牌照数.

分析 (1)当1≤n≤20,求出通项公式,当n≥21且n∈N*,an=0求出通项公式,然后求解这两个数列的通项公式;
(2)求出数列的和,推出结果即可.

解答 解:(1)当1≤n≤20且n∈N*,${a_n}=10+(n-1)×(-0.5)=-\frac{n}{2}+\frac{21}{2}$;
当n≥21且n∈N*,an=0.∴${a}_{n}=\left\{\begin{array}{l}{-\frac{n}{2}+\frac{21}{2},1≤n≤20,n∈{N}^{*}}\\{0,n≥21,n∈{N}^{*}}\end{array}\right.$…(3分)
而a4+b4=15.25>15,∴${b}_{n}=\left\{\begin{array}{l}{2•({\frac{3}{2})}^{n-1},1≤n≤4,n∈{N}^{*}}\\{6.75,n≥5,n∈{N}^{*}}\end{array}\right.$…(6分)
(2)${S_{17}}={a_1}+{a_2}…+{a_{17}}+{b_1}+{b_2}…+{b_{17}}=\frac{10+2}{2}×17+\frac{{2(1-{{(\frac{3}{2})}^4})}}{{1-\frac{3}{2}}}+13×6.75=206$(万辆)
所以到2029年(包含2029年)累计各年发放的牌照数为206万辆…(10分)

点评 本题考查数列在函数中的应用,考查分析问题解决问题的能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.平面α外有两点A和B到平面的距离分别为3和6,若A,B在平面α上的射影间的距离为4,则线段AB的长为3$\sqrt{5}$或$\sqrt{117}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A(-1,0),B是圆C:(x-1)2+y2=8(C为圆心)上一动点,线段AB的垂直平分线交BC于P,则动点P的轨迹方程为$\frac{x^2}{2}+{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过圆x2+y2=4外一点P作该圆的切线,切点为A、B,若∠APB=60°,则点P的轨迹是(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,设内角A、B、C的对边分别为a、b、c,$sin(\frac{π}{3}-C)+cos(C-\frac{π}{6})=\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{3}$且sinA=2sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是奇函数,又在(1,+∞)上递增的是(  )
A.y=x3-6xB.y=x2-2xC.y=sinxD.y=x3-3x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.写出命题“存在x∈(0,+∞),使得lnx>x-1”的否定:对任意x∈(0,+∞),都有lnx≤x-1..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x|x-4≥0},B={x|y=log2(x-2)≤2},则(∁RA)∩B=(  )
A.{x|2<x≤4}B.{x|2<x<4}C.{x|2≤x<4}D.{x|2≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(1+$\frac{2}{x}$)(1-x)4的展开式中含x3的项的系数为(  )
A.-2B.2C.-3D.3

查看答案和解析>>

同步练习册答案