精英家教网 > 高中数学 > 题目详情
5.过圆x2+y2=4外一点P作该圆的切线,切点为A、B,若∠APB=60°,则点P的轨迹是(  )
A.直线B.C.椭圆D.抛物线

分析 由题意画出图形,通过求解直角三角形可得点P到原点的距离为定值4,则答案可求.

解答 解:如图,
∵∠APB=60°,∴∠APO=30°,
在Rt△PAO中,∵OA=2,∴PO=4.
则点P的轨迹是以O为圆心,以4为半径的圆.
故选:B.

点评 本题考查轨迹方程,考查了圆的定义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设D是△ABC的边BC上一点,且$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,若AB:AD:AC=3:k:1,则k的取值范围是(  )
A.($\frac{1}{3}$,$\frac{4}{3}$)B.(1,4)C.($\frac{5}{3}$,$\frac{7}{3}$)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{sinx}$+$\sqrt{tanx}$的定义域为{x|2kπ≤x<2kπ+$\frac{π}{2}$或x=(2k+1)π,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+nx2+mx,g(x)=nx2-mx,其中m,n∈R.
(1)若当m=n+6时,函数f(x)有两个极值点x1,x2(x1<x2),且0≤x1<1,2≤x2<3,求实数n的取值范围和f(x1)+f(x2)的取值范围;
(2)当n>m,且mn≥0时,若函数f(x),g(x)在区间[m,n]上都是单调函数,且单调性相反,求n-2m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的解析式为(  )
A.g(x)=2sin(2x+$\frac{2π}{3}$)B.g(x)=2sin(2x-$\frac{π}{6}$)C.g(x)=2sin2xD.g(x)=2cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$a={3^{0.1}},b={log_π}2,c={log_2}sin\frac{2π}{3}$,则a,b,c大小关系为(  )
A.b>c>aB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,一旦某年发放的燃油型汽车牌照数为0万张,以后每一年发放的燃油型的牌照的数量维持在这一年的水平不变.同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{an},每年发放的电动型汽车牌照数为构成数列{bn},写出这两个数列的通项公式;
(2)从2013年算起,求到2029年(包含2029年)累计各年发放的牌照数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{\begin{array}{l}{2x+y-2≤0}\\{3x-y-3≤0}\\{x≥0}\end{array}\right.$,则z=x-y的最小值为(  )
A.-3B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.观察下列数的特点1,2,2,3,3,3,4,4,4,4,…中,第90项是(  )
A.12B.13C.14D.15

查看答案和解析>>

同步练习册答案