精英家教网 > 高中数学 > 题目详情
8.已知A(-1,0),B是圆C:(x-1)2+y2=8(C为圆心)上一动点,线段AB的垂直平分线交BC于P,则动点P的轨迹方程为$\frac{x^2}{2}+{y^2}=1$.

分析 由题意画出图形,可得|PA|+|PC|=|CB|=$2\sqrt{2}$>2,可得动点P的轨迹为以B、C为焦点的椭圆,则答案可求.

解答 解:如图,圆C:(x-1)2+y2=8的圆心C(1,0),半径为r=|CB|=$2\sqrt{2}$,
由图可知,∵P是AB的垂直平分线上的点,
∴|PA|=|PB|,则|PA|+|PC|=|CB|=$2\sqrt{2}$,
∵$2\sqrt{2}>2$,
∴动点P的轨迹为以B、C为焦点的椭圆,且a=$\sqrt{2}$,c=1,
∴b2=a2-c2=1.
∴动点P的轨迹方程为$\frac{x^2}{2}+{y^2}=1$.
故答案为:$\frac{x^2}{2}+{y^2}=1$.

点评 本题考查轨迹方程的求法,考查了椭圆的定义,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设f(x)=x2+2x+1.
(1)求y=f(x)的图象与两坐标所围成图形的面积;
(2)若直线x=-t(0<t<1)等于y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面有四个结论:
①第一项起乘相同常数得后一项,这样所得到的数列一定为等比数列;
②常数列b,b,b,…,b一定为等比数列;
③等比数列{an}中,若公比q=1,则此数列各项相等;
④在等比数列中,各项与公比都不为零.
正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{sinx}$+$\sqrt{tanx}$的定义域为{x|2kπ≤x<2kπ+$\frac{π}{2}$或x=(2k+1)π,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦点分别为F1、F2,过F1且垂直于x轴的直线与双曲线左支交于A、B两点,若△ABF2为正三角形,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+nx2+mx,g(x)=nx2-mx,其中m,n∈R.
(1)若当m=n+6时,函数f(x)有两个极值点x1,x2(x1<x2),且0≤x1<1,2≤x2<3,求实数n的取值范围和f(x1)+f(x2)的取值范围;
(2)当n>m,且mn≥0时,若函数f(x),g(x)在区间[m,n]上都是单调函数,且单调性相反,求n-2m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的解析式为(  )
A.g(x)=2sin(2x+$\frac{2π}{3}$)B.g(x)=2sin(2x-$\frac{π}{6}$)C.g(x)=2sin2xD.g(x)=2cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,一旦某年发放的燃油型汽车牌照数为0万张,以后每一年发放的燃油型的牌照的数量维持在这一年的水平不变.同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{an},每年发放的电动型汽车牌照数为构成数列{bn},写出这两个数列的通项公式;
(2)从2013年算起,求到2029年(包含2029年)累计各年发放的牌照数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=3x+sin(2x+1),且函数f(x)的两个极值点为α,β(α<β).设λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{x}_{2}+{x}_{3}}{2}$,则(  )
A.g(a)<g(λ)<g(β)<g(μ)B.g(λ)<g(a)<g(β)<g(μ)C.g(λ)<g(a)<g(μ)<g(β)D.g(a)<g(λ)<g(μ)<g(β)

查看答案和解析>>

同步练习册答案