精英家教网 > 高中数学 > 题目详情
7.若(ax2+x+y)5的展开式的各项系数和为243,则x5y2的系数为(  )
A.10B.20C.30D.60

分析 根据各项系数和求出a的值,再利用乘方的意义求出x5y2的系数.

解答 解:令x=y=1,可得(ax2+x+y)5的展开式的各项系数和为(a+2)5=243,
∴a=1,(x2+x+y)5=(x2+x+y)5
而(ax2+x+y)5表示5个因式(ax2+x+y)的积,故有2个因式取y,2个因式取x2,剩下的一个因式取x,
可得函x5y2的项,
故x5y2的系数为${C}_{5}^{2}$•${C}_{3}^{2}$=30,
故选:C.

点评 本题主要考查二项式定理的应用,乘方的意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=tan2x-2tanx+3的最小值是2,这时x=$\frac{π}{4}$+kπ,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{AB}$=(3,4),点A的坐标为(-2,3),求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论错误的是(  )
A.命题“若p,则¬q”与命题“若q,则¬p”互为逆否命题
B.命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∧q为真
C.“若am2<bm2,则a<b”为真命题
D.若p∨q为假命题,则p、q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定点A(-3,4),点B是圆O:x2+y2=9上的一个动点,以OA,OB为邻边作平行四边形AOBP,当点B是在圆O上运动时求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,设内角A、B、C的对边分别为a、b、c,$sin(\frac{π}{3}-C)+cos(C-\frac{π}{6})=\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{3}$且sinA=2sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把曲线C:y=sin($\frac{3π}{4}$-x)•cos(x+$\frac{π}{4}$)上所有点向右平移a(a>0)个单位,得到曲线C′,且曲线C′关于点(0,0)中心对称,当x∈[$\frac{b+1}{8}$π,$\frac{b+1}{4}$π](b为正整数)时,过曲线C′上任意两点的直线的斜率恒小于零,则b的值为(  )
A.1B.2C.3D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=2x2+bx+c.
(1)对任意x∈[-1,1],f(x)的最大值与最小值之差不大于6,求b的取值范围;
(2)若f(x)=0有两个不同实根,f(f(x))无零点,求证:$\sqrt{2b+1}$-$\sqrt{{b}^{2}-8c}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2x3-3x,若过点P(1,t)存在3条直线与曲线y=f(x)相切,则t的取值范围是(-3,-1).

查看答案和解析>>

同步练习册答案