精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
log2x,x≥0
x2,x<0
,那么f[f(-2)]=(  )
A、-16B、16C、2D、-2
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(-2)=(-2)2=4,由此能求出f[f(-2)]=f(4)=log24=2.
解答: 解:∵函数f(x)=
log2x,x≥0
x2,x<0

∴f(-2)=(-2)2=4,
∴f[f(-2)]=f(4)=log24=2.
故答案为:2.
点评:本题考查函数值的求法,是基础题,解题时要注意分段函数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正数x,y满足2x+y<4,则
y+1
x+1
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin10°=k,则sin110°=(  )
A、1-k2
B、2k2-1
C、1-2k2
D、1+2k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:p:3<x<4,q:ax2+2x-1>0.,若p是q的充分条件,则a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x||x|≤1},B={x|
x-2
x
≤0},则A∩B为(  )
A、[-1,0)
B、(0,1]
C、[0,2]
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值:
(1)sin
π
4
cos
19π
6
tan
21π
4

(2)sin 420°cos 330°+sin(-690°)cos(-660°).

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x>0,x-lnx>0”的否定是(  )
A、?x>0,x-lnx≤0
B、?x>0,x-lnx<0
C、?x>0,x-lnx<0
D、?x>0,x-lnx≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,侧棱PA⊥底面ABCD,PA=2
3
,AB=1,AD=2,AM⊥PD,垂足为M
(Ⅰ)证明:平面ACM⊥平面PCD;
(Ⅱ)求三棱锥M-PAC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1过点(2,3),且一条渐近线的倾斜角为
π
3

(Ⅰ)求双曲线C的方程;
(Ⅱ)设双曲线C的左顶点为A1,右焦点为F2,P为双曲线C右支上一点,求
PA1
PF2
的最小值.

查看答案和解析>>

同步练习册答案