精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=-$\frac{1}{3}{x^3}+{x^2}+({m^2}-1)$x(x∈R),其中m>0.
(1)当m=$\frac{3}{2}$,求函数f(x)在区间[-2,2]上的最大值;
(2)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.

分析 (1)求出函数的导数,求得f(x)在[-2,2]的极值点,再由f(x)在端点处的函数值和极值,加以比较,即可得到最大值;
(2)化简f(x)为因式的乘积,运用二次方程根与系数的关系,结合不等式恒成立思想,即可得到m的取值范围.

解答 解:(1)当m=$\frac{3}{2}$,f(x)=-$\frac{1}{3}$x3+x2+$\frac{5}{4}$x,
导数f′(x)=-x2+2x+$\frac{5}{4}$,
f′(x)=0在[-2,2]上的解为x=-$\frac{1}{2}$($\frac{5}{2}$舍去),
由f(-2)=$\frac{8}{3}$+4-$\frac{5}{2}$=$\frac{25}{6}$,f(-$\frac{1}{2}$)=$\frac{1}{24}$+$\frac{1}{4}$-$\frac{5}{8}$=-$\frac{1}{3}$,f(2)=-$\frac{8}{3}$+4+$\frac{5}{2}$=$\frac{23}{6}$.
则函数f(x)在区间[-2,2]上的最大值为$\frac{25}{6}$;
(2)由题设,f(x)=x(-$\frac{1}{3}$x2+x+m2-1)
=-$\frac{1}{3}$x(x-x1)(x-x2),
∴方程-$\frac{1}{3}$x2+x+m2-1=0有两个相异的实根x1,x2
故x1+x2=3,且△=1+$\frac{4}{3}$(m2-1)>0,
∵m>0,解得m>$\frac{1}{2}$,
∵x1<x2,所以2x2>x1+x2=3,
故x2>$\frac{3}{2}$>1.
①当x1≤1<x2时,f(1)=-$\frac{1}{3}$(1-x1)(1-x2)≥0,而f(x1)=0,不符合题意,
②当1<x1<x2时,对任意的x∈[x1,x2],都有x>0,x-x1≥0,x-x2≤0,
则f(x)=-$\frac{1}{3}$x(x-x1)(x-x2)≥0,
又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0,
于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件
是f(1)=m2-$\frac{1}{3}$<0,
解得-$\frac{\sqrt{3}}{3}$<m<$\frac{\sqrt{3}}{3}$,
∵m>$\frac{1}{2}$,
即有m的取值范围是($\frac{1}{2}$,$\frac{\sqrt{3}}{3}$).

点评 本题主要考查了导数的运用:求最值和不等式恒成立问题,运用函数的单调性及函数和方程转化思想是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$,g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且椭圆C的离心率为$\frac{1}{2}$.
(I)求椭圆C的方程;
(Ⅱ)若动点P在直线x=-1上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线l⊥MN.证明:直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=2PA=2AB=2BC=2.
(Ⅰ)求三棱锥P-ACD的外接球的体积;
(Ⅱ)求二面角B-PC-A与二面角A-PC-D的正弦值之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱柱ABD-A1B1C1D1的底面ABCD是直角梯形,AB∥CD,AD⊥CD,侧棱AA1⊥底面ABCD,E是CD的中点,CD=2AB=2AD,AD=1,AA1=$\sqrt{2}$.
(Ⅰ)求证:EA1⊥平面BDC1
(Ⅱ)求二面角D-BC1-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当且仅当x∈(a,b)∪(c,+∞)(其中b≤c)时,函数f(x)=2|x+1|的图象在g(x)=|2x-t|+x的图象的下方,则c+b-a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据十八大的精神,全国在逐步推进教育教学制度改革,各高校自主招生在高考录取中所占的比例正在逐渐加大.对此,某高校在今年的自主招生考试中制定了如下的规则:笔试阶段,考生从6道备选试题中一次性抽取3道题,并独立完成所抽取的3道题,至少正确完成其中2道试题则可以进入面试.已知考生甲正确完成每道题的概率为$\frac{2}{3}$,且每道题正确完成与否互不影响;考生乙能正确完成6道试题中的4道题,另外2道题不能完成.(Ⅰ)求考生甲至少正确完成2道题的概率;
(Ⅱ)求考生乙能通过笔试进入面试的概率;
(Ⅲ)记所抽取的三道题中考生乙能正确完成的题数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1,a2,…,ak是以4为首项、-2为公差的等差数列,ak+1,ak+2,…,a2k是以$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列(k≥3,k∈N*),且对任意的n∈N*,都有an+2k=an成立,Sn是数列{an}的前n项和.
(1)当k=5时,求a48的值;
(2)判断是否存在k,使S4k+3≥18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知△ABC的两条内角平分线AD,BE交于点F,且∠C=60°.求证:C,D,E,F四点共圆.

查看答案和解析>>

同步练习册答案