【题目】已知各项为正的数列{an}是等比数列,a1=2,a5=32,数列{bn}满足:对于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n , 求 的值;
(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100 .
【答案】
(1)解:∵a1=2,a5=32,
∴q= =2,
∴an=2n
(2)解:f(n)=a2+a4+…+a2n=22+24+…+22n= = ,f(n+1)= .
∴ = = =4
(3)解:∵a1b1+a2b2+…+anbn=(n﹣1)2n+1+2,
∴当n≥2时,a1b1+a2b2+…+an﹣1bn﹣1=(n﹣2)2n+2,
两式相减得:anbn=(n﹣1)2n+1+2﹣(n﹣2)2n+2=n2n,即bn= =n(n≥2),
又∵a1b1=2,即b1=1满足上式,
∴bn=n;
设Sn表示数列{cn}的前n项之和,
S100=(a1+a2+…+a50)+(b1+b2+…+b50)
=2+22+…+250+1+2+…+50
= +
=251+1273
【解析】(1利用q= ,即可得出.(2)利用等比数列的求和公式可得f(n)= ,f(n+1)= .再利用极限的运算法则即可得出.(3)由a1b1+a2b2+…+anbn=(n﹣1)2n+1+2,当n≥2时,a1b1+a2b2+…+an﹣1bn﹣1=(n﹣2)2n+2,两式相减得:可得bn= =n(n≥2),b1=1满足上式,可得bn=n.设Sn表示数列{cn}的前n项之和,S100=(a1+a2+…+a50)+(b1+b2+…+b50),即可得出.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(﹣∞,0)∪(0,+∞),f(x)是奇函数,且当x>0时,f(x)=x2﹣x+a,若函数g(x)=f(x)﹣x的零点恰有两个,则实数a的取值范围是( )
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是直线与函数图像的两个相邻的交点,且.
(1)求的值和函数的单调增区间;
(2)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求函数的对称轴方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=2sin(2x+ )的图象向右平移φ(φ>0)个单位,再将图象上每一点横坐标缩短到原来的 倍,所得图象关于直线x= 对称,则φ的最小正值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga (a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值;
(3)设函数g(x)=﹣ax2+8(x﹣1)af(x)﹣5,a≥8时,存在最大实数t,使得x∈(1,t]时﹣5≤g(x)≤5恒成立,请写出t与a的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足条件(n﹣1)an+1=(n+1)(an﹣1),且a2=6,
(1)计算a1、a3、a4 , 请猜测数列{an}的通项公式并用数学归纳法证明;
(2)设bn=an+n(n∈N*),求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个四棱锥的三视图如图所示,关于这个四棱锥,下列说法正确的是( )
A. 最长的棱长为
B. 该四棱锥的体积为
C. 侧面四个三角形都是直角三角形
D. 侧面三角形中有且仅有一个等腰三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲乙两班各6名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图,则甲班样本数据的众数和乙班样本数据的中位数分别是( )
A.170,170
B.171,171
C.171,170
D.170,172
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com