精英家教网 > 高中数学 > 题目详情

若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则的最大值为________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:


 已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.

(1) 求抛物线D的方程;

(2) 过椭圆C右顶点A的直线l交抛物线D于M、N两点.

① 若直线l的斜率为1,求MN的长;

② 是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


在平面直角坐标系中,有椭圆=1(a>b>0)的焦距为2c,以O为圆心,a为半径的圆.过点作圆的两切线互相垂直,则离心率e=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


 F1,F2是椭圆+y2=1的左右焦点,点P在椭圆上运动.则的最大值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C:=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G: (c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.

(1) 若椭圆C经过两点,求椭圆C的方程;

(2) 当c为定值时,求证:直线MN经过一定点E,并求的值(O是坐标原点);

(3) 若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,若顶点到渐近线的距离为1,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:


 设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.

查看答案和解析>>

同步练习册答案